
www.manaraa.com

Lehigh University
Lehigh Preserve

Theses and Dissertations

2012

Towards High Quality Semantic Web Data:
Detecting Abnormal Data on the Semantic Web
Yang Yu
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Yu, Yang, "Towards High Quality Semantic Web Data: Detecting Abnormal Data on the Semantic Web" (2012). Theses and
Dissertations. Paper 1373.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1373?utm_source=preserve.lehigh.edu%2Fetd%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


www.manaraa.com

TOWARDS HIGH QUALITY

SEMANTIC WEB DATA: DETECTING

ABNORMAL DATA ON THE

SEMANTIC WEB

by

Yang Yu

A Dissertation

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Science

Lehigh University

May 2012



www.manaraa.com

c⃝ Copyright 2012 by Yang Yu

All Rights Reserved

ii



www.manaraa.com

This dissertation is accepted in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy.

(Date)

Jeff Heflin (Chair)

Brian Davison

Donald Hillman

Lin Lin

iii



www.manaraa.com

iv



www.manaraa.com

Acknowledgements

I would like to thank Professor Jeff Heflin for all his help. I cannot thank him enough

for his support and patience. He is a great advisor and I have been inspired by his

brilliance, hard work, and dedication and have benefited greatly from his guidance

and example. Without him this work would not have been possible. I would like also

to thank my committee members, Professors Brian Davison, Donald Hillman and Lin

Lin for their thoughtful comments and encouragement. I am also warmly grateful

to my colleagues Yingjie Li, Xingjian Zhang, Dezhao Song and Zhengxiang Pan for

insightful suggestions and helps. Finally this dissertation is dedicated to my wife

Yun Sun, my parents Yukun Yu and Yafen Huang and my parents-in-law Changqing

Sun and Xianzhi Zhang. Without their endless love, patience, understanding and

support I would certainly not be where I am today.

v



www.manaraa.com

vi



www.manaraa.com

Contents

Acknowledgements v

Abstract 1

1 Introduction 3

1.1 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Quality Assessment on the Semantic Web . . . . . . . . . . . . . . . . 11

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background 19

2.1 Semantic Web Languages . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 RDF and RDF schema . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 RDF Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 RDF Query Language SPARQL . . . . . . . . . . . . . . . . . 27

2.1.4 OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Data Quality and Data Cleansing . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Data Quality Dimensions . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Data Quality Methodologies . . . . . . . . . . . . . . . . . . . 39

2.2.3 Data Cleansing . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Data Quality on the Semantic Web . . . . . . . . . . . . . . . . . . . 45

2.3.1 Quality Annotation . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Semantic Web Data Evaluation . . . . . . . . . . . . . . . . . 49

vii



www.manaraa.com

3 The Problem of Detecting Abnormal Semantic Web Data 55

3.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Univariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 Multivariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Abnormal Semantic Web data . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Design Considerations of a Practical System . . . . . . . . . . . . . . 64

4 Data Correctness under the Closed World Assumption 69

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Context Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Credible Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Patterns of Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Data Correctness under the Open World Assumption 97

5.1 Context Representation Model . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Representing Context for Two Instances . . . . . . . . . . . . 101

5.1.2 Context Expansion . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.3 Semantic Similarity of Contexts . . . . . . . . . . . . . . . . . 104

5.2 Learning Predicate Similarity . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.2 Learning Model for Predicate Similarity . . . . . . . . . . . . 107

5.2.3 Dimensionality Reduction for Learning . . . . . . . . . . . . . 110

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Parameters Analysis . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Data Correctness without Training 121

6.1 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

viii



www.manaraa.com

6.2 Semantic Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Summary Graph . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.2 Finding Candidate Semantic Dependencies . . . . . . . . . . . 129

6.3 Probability of Semantic Dependency . . . . . . . . . . . . . . . . . . 132

6.3.1 Computing Probability of a Semantic Dependency . . . . . . . 133

6.3.2 Refine Probability of a Semantic Dependency . . . . . . . . . 134

6.3.3 Triple’s Posterior Probability . . . . . . . . . . . . . . . . . . 136

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Detecting Abnormal Data using Value-clustered Graph Functional

Dependency 145

7.1 Functional Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 Value-clustered Graph Functional Dependency . . . . . . . . . . . . . 153

7.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4 Discovering VGFDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4.1 Heuristics for Static Pruning . . . . . . . . . . . . . . . . . . . 161

7.4.2 Computing VGFDs . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4.3 Run-time Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.5 Clustering Property Values . . . . . . . . . . . . . . . . . . . . . . . . 168

7.5.1 Pre-clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.5.2 Optimal k-Means Clustering . . . . . . . . . . . . . . . . . . . 170

7.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8 Conclusion 179

8.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A Example comparisons of clustering results 189

Bibliography 194

ix



www.manaraa.com

x



www.manaraa.com

List of Tables

2.1 RDFS classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 OWL DL axioms and facts. . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 All possible errors that a triple can have. . . . . . . . . . . . . . . . . 63

4.1 Comparison among different types of classifiers. . . . . . . . . . . . . 90

5.1 Some predicate pairs from SWRC and DBpedia and their result sim-

ilarity values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Several example semantic dependencies in SWRC and DBpedia. . . . 137

6.2 The effect of different stopping thresholds on the system in SWRC. . 141

6.3 The impact of credible threshold on the estimated precision of true

errors reported by system. . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1 The left table is the triple list. The right table is mapping count. . . 165

7.2 System overall performance on SWRC, DBpedia and RKB data sets. 172

7.3 Some VGFDs from the three data sets. The first and second group

of VGFDs are of size 1 and 2 respectively. The third group is a set

of VGFDs with clustered values. . . . . . . . . . . . . . . . . . . . . . 173

7.4 Correlation between values of school type and clusters of property

upper age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5 Some confirmed erroneous triples in the three data sets. The first

group is outliers and the second group is VGFD violations. . . . . . . 175

7.6 The impact of my pruning techniques. . . . . . . . . . . . . . . . . . 175

xi



www.manaraa.com

7.7 Comparison between preclustering with an alternative called SortSeq

on VGFDs using the clusters and abnormal data found based on these

VGFDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xii



www.manaraa.com

List of Figures

1.1 Instance linkages within the linking open data datasets . . . . . . . . 6

2.1 RDF graph describing Joe Smith. . . . . . . . . . . . . . . . . . . . . 25

2.2 Examples of definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 A basic example triple. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Data quality annotation with reification. . . . . . . . . . . . . . . . . 47

2.5 Quality annotation with named graphs in quads. . . . . . . . . . . . . 48

2.6 Data mapping using local instances. . . . . . . . . . . . . . . . . . . . 48

4.1 The work flow of the system under closed world assumption. . . . . . 72

4.2 Examples of definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Part of two context subgraphs from SWRC dataset, the left hand side

is around James Hendler and RPI and the right hand side is around

James Hendler and Tsinghua University. The namespace of swrc is

<http://data.semanticweb.org/>. . . . . . . . . . . . . . . . . . . . . 75

4.4 Example transition of internal states from when B is finished expand-

ing to when A is finished expanding. . . . . . . . . . . . . . . . . . . 78

4.5 The effect of context size on context construction time. . . . . . . . . 91

4.6 (a)(b) Results of the component SR on determining significant rela-

tions on SWRC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7 (a)(b) Results of the component SR on determining significant rela-

tions on DBpedia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8 Impact of less complete data on the systems ability to detect signifi-

cant relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiii



www.manaraa.com

4.9 Impact of erroneous data on the systems ability to detect significant

relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.10 Results of the component SR using subsets of indicators on two data

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.11 Comparison between component RT and the baseline on determining

relation types on two data sets. . . . . . . . . . . . . . . . . . . . . . 95

5.1 The work flow of the system under open world assumption. . . . . . . 99

5.2 The effect of different expansion factor α and different credible rela-

tion threshold β on F-score and SWRC. . . . . . . . . . . . . . . . . 115

5.3 The effect of different expansion factor α and different credible rela-

tion threshold β on F-score and DBpedia. . . . . . . . . . . . . . . . 115

5.4 The effect of different expansion factor α and different credible rela-

tion threshold β on precision and SWRC. . . . . . . . . . . . . . . . . 116

5.5 The effect of different expansion factor α and different credible rela-

tion threshold β on precision and DBpedia. . . . . . . . . . . . . . . . 116

5.6 The effect of different expansion factor α and different credible rela-

tion threshold β on recall and SWRC. . . . . . . . . . . . . . . . . . . 116

5.7 The effect of different expansion factor α and different credible rela-

tion threshold β on recall and DBpedia. . . . . . . . . . . . . . . . . 116

5.8 The effect of clustering threshold γ on learning time and performance. 117

5.9 The effect of clustering threshold γ on learning time and performance. 117

5.10 Comparison of the effects of removing data from the referenced data

set on the current system and on the previous system. . . . . . . . . . 118

5.11 Comparison of the effects of erroneous data in the referenced data set

on the current system and on the previous system. . . . . . . . . . . . 118

6.1 The work flow of the system without referenced data set. . . . . . . . 124

xiv



www.manaraa.com

6.2 An example process building a summary graph. The summarized

predicates are highlighted and the summarized nodes are shaded. (a)

The original RDF graph. (b) An intermediate state of building the

summary graph where the predicate author is summarized. (c) An

intermediate state of building the summary graph where the predicate

made is summarized. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 An example process of finding all cycles in an undirected graph. (a)

is the graph. (b) is the spanning tree created by a DFS starting at

node 1. (c), (d) and (e) are three cycles for three back edges found

in DFS. (f) is a cycle obtained by combining cycle (d) and (e). . . . . 132

6.4 The effect of different percentage of abnormal data in SWRC and

different credible relation threshold. . . . . . . . . . . . . . . . . . . . 138

6.5 The effect of different percentage of abnormal data in DBpedia and

different credible relation. . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6 The effect of different prior probability assignments in SWRC. . . . . 139

6.7 The effect of different prior probability assignments in DBpedia. . . . 140

7.1 An RDF graph example illustrating the definitions related to VGFD. 156

7.2 Another RDF graph example illustrating the patterns to be discov-

ered by VGFDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 The work flow of the system based on VGFD. . . . . . . . . . . . . . 158

7.4 An example of level-wise discovering process. We suppose that (1)

property A and B have few common subjects, (2) the discriminability

of B is less than that of C and (3) D has a high discriminability. . . 163

7.5 Some of the candidate VGFDs on the first level are pruned out. . . . 163

7.6 Some of the candidate VGFDs on the second level are pruned out

due to the reason as their parents. . . . . . . . . . . . . . . . . . . . 164

7.7 Other candidate VGFDs are pruned out. . . . . . . . . . . . . . . . . 164

7.8 The effect of number of properties on the VGFD searching time. . . 176

7.9 The effect of sampling size in runtime pruning on the VGFD searching

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xv



www.manaraa.com

8.1 The architecture of whole system. The four dashed boxes are parallel

algorithms for each situation. . . . . . . . . . . . . . . . . . . . . . . 180

xvi



www.manaraa.com

Abstract

In an information system spanning multiple, distributed, and autonomous data

sources, data quality is a problem intrinsic to any architecture of an integrated

information system, because the providers of the data have control over their source

content and how they describe it. Low quality data is also a pressing problem for

consumers of distributed information. Because recent developments in the Semantic

Web have suggested that it may be possible to rethink information integration, data

quality research on the Semantic Web can be promising to solve the quality issues

in distributed information systems. Correctness is often used synonymously with

data quality.

The goal of this work is to design algorithms to detect erroneous Semantic Web

data by identifying abnormality, because such abnormal data is indicative quality

issues. Such algorithms would be very useful in many scenarios, e.g., filtering query

results derived from low quality data, providing input for other assessments (e.g.

trust) and improving the quality of the data in integrated systems. One means

of assessing quality is finding corroborations, e.g. an axiom that can be entailed

by other axioms is more likely correct, because the entailment can be seen as a

corroboration. Similarly, we have the probabilistic rules that are valid for most or

verified data and a statement is entailed by these rules, then that statement is more

likely correct than those that cannot be entailed.

Based on these ideas, I developed the following algorithms. Utilizing a referenced

data set that is assumed to contain few errors and where the closed world assumption

is valid, the first algorithm tries to learn to classify data into categories for each

type of error that an object property triple could have. The second algorithm

1



www.manaraa.com

focuses on relaxing the closed world assumption, i.e. the statements not existing

in data can not be assumed false. Without learning from a referenced data set

in advance, the third algorithm discovers the patterns that are similar to the ones

used in the previous systems, but relaxes the assumption of ”few errors”. Then it

improves on three aspects compared to the previous systems. (1) The process of

searching patterns is more efficient than the previous systems by doing a level wise

searching; (2) the probabilities of patterns are affected by the data with different

truth probabilities; (3) the system checks logic consistencies among patterns to

further differentiate them. The last algorithm tries to discover value-clustered graph

functional dependencies, an extended concept of functional dependency in databases.

These dependency rules have a more general form than the patterns in the other

systems, and can capture more latent semantics in data. Using them, the system

greatly improves the capability of detecting abnormality on all types of values and in

the situation where no explicit connections exist in data. Experiments on a number

of data sets from different domains validate these systems. All these algorithms

can be easily applied to common Semantic Web data in query answering systems,

information integration systems and semantic search systems.

2



www.manaraa.com

Chapter 1

Introduction

It is clear that we are living in an age of increasingly vast digital information. Quite

literally, data is everywhere. Meanwhile, of course, this proliferation of data is not

expected to stop anytime soon. However data is deemed of only high quality if they

correctly represent the real-world construct to which they refer. Although there are

many definitions of Data Quality (DQ), the following is often used:

...consistently meeting all knowledge worker and end-customer expectations in

all quality characteristics of the information products and services

required to accomplish the enterprise mission (internal knowledge worker)

or personal objectives (end customer) [28].

The consequences of poor quality of data are often experienced in everyday life, but,

often, without making the necessary connections to their causes. For example, the

late or mistaken delivery of a letter is often blamed on a problematic postal service,

although a closer look often reveals data-related causes, typically an error in the

address, originating in the address database. A more significant error is related to

the potential health impacts of radiation exposure that are often a source of concern

for people. It is reported in Wired.com [57] and CNN [4] that the Transportation

Security Administration (TSA) in the United States is to conduct extensive radia-

tion safety tests on their introduced backscatter full body scanners (affectionately

known as the “nudie scanner” in some quarters). An internal review of the previous

3



www.manaraa.com

safety testing which had been done on the devices revealed a litany of calculation

errors, missing data and other discrepancies on paperwork. In short, it is a data

quality problem. A TSA spokesperson described the issues to CNN as being “record

keeping errors”. The errors affected approximately 25% of the scanners which are

in operation, which Wired.com identifies as being from the same manufacturer, and

included errors in the calculation of radiation exposure that occurs when passing

through the machine. The calculations were off by a factor of 10. Wired.com inter-

viewed a TSA spokesperson and they provided the following information: “Rapiscan

technicians in the field are required to test radiation levels 10 times in a row, and

divide by 10 to produce an average radiation measurement. Often, the testers failed

to divide results by 10.” For their part, the manufacturer is redesigning the form

used by technicians conducting tests to avoid the error in the future. There are more

examples showing that the quality of data has serious consequences, of far-reaching

significance, for the efficiency and effectiveness of organizations and businesses. As

the report on data quality of the Data Warehousing Institute (see [27]) estimates

that data quality problems cost U.S. businesses more than 600 billion dollars a

year, because there is a significant gap between perception and reality regarding the

quality of data in many organizations.

With the information explosion, information integration - the merging of infor-

mation from disparate sources with differing conceptual, contextual and typograph-

ical representations - is a natural and necessary requirement. However data quality

becomes more critical and harder to solve in the context of information integration.

As in an information system spanning multiple, distributed, and autonomous data

sources, data quality can suffer problems that are intrinsic to any architecture of

an integrated information system as well as various technical problems that arise

from an integrated system [73]. Data sources are autonomous from the integrators

point of view. Due to autonomy, source accessibility varies. Some sources allow

full query capability, some provide only simple protocol connect (e.g. html-forms).

Thus, not all available data can actually be accessed and used. Also due to source

autonomy, sources tend to be heterogeneous in various aspects: Sources use differ-

ent data models, have different semantics, such as attribute names, different scope,

4



www.manaraa.com

different structures, etc. This heterogeneity decreases the quality of an integrated

result.

To support information integration, a significant portion of traditional informa-

tion technology expenditures is used to translate information from one format to

another, thus enabling exchange of information between units and systems. Re-

cent developments in the Semantic Web have suggested that it may be possible to

rethink information integration - to integrate sources on-the-fly, as opposed to de-

veloping special purpose translation programs. Semantic Web technologies aim to

attach data structure, typed links, and axiomatically represented implicit facts to

data available on the Web. One of the goals is to empower computers to better

extract, combine, interpret, and reuse the data [16]. Linked Data is a representative

Semantic Web data cloud (shown in Figure 1.1). It currently consists of 31 billion

RDF triples, which are interlinked by around 504 million RDF links (September

2011), and is growing exceptionally fast [17]. A major share of such data origi-

nates from existing relational databases and is lifted by mapping database schema

elements to Web ontologies. An ontology is a formal logic based description of a

vocabulary that allows one to talk about a domain of discourse. The vocabulary

is articulated using definitions and relationships among the defined concepts (I will

introduce more about ontology and related knowledge in Chapter 2 ). Businesses

and public institutions have already started to publish significant amounts of real

world data on the Web using Web ontologies [36]. In addition to the growing number

of data published directly by the owners of the data source, there is development

of tools that actively retrieve real data from vendors and provide a Semantic Web

interface. For example, the enterprise OpenLink Software has released a middleware

technology called “Sponger cartridges” that creates, on the fly, RDF representations

of Amazon, eBay, and other commerce sites using the GoodRelations ontology [47]

by accessing vendor-specific APIs [1]. This makes more unprecedented amounts of

actual business data available on the Web of Linked Data. Furthermore many real

world applications are beginning to use Semantic Web techniques and exploit such

Semantic Web data. Here are some examples of them.

5



www.manaraa.com

Figure 1.1: Instance linkages within the linking open data datasets

6



www.manaraa.com

• Life sciences domain. As many biological datasets are presently available

in tabular format, a prototype web-based application called YeastHub [23]

demonstrates how a life sciences data warehouse can be built using a native

Semantic Web data store. This data warehouse allows integration of different

types of yeast genome data provided by different resources in different formats

including the tabular and RDF formats. Once the data is loaded into the data

warehouse, queries can be formulated to retrieve and query the data in an

integrated fashion.

• E-commerce domain. Internet business-to-business transactions present great

challenges in merging information from different sources. Yu et al. [102] de-

scribe a project to integrate four representative commercial classification sys-

tems with the Federal Cataloging System (FCS). The FCS is used by the US

Defense Logistics Agency to name, describe and classify all items under inven-

tory control by the Department of Defense. Our approach uses the ECCMA

Open Technical Dictionary (eOTD) as a common vocabulary to accommodate

all different classifications. Then we create a semantic bridging ontology be-

tween each classification and the eOTD to describe their logical relationships

in a semantic web language. The essential idea is that since each classification

has formal definitions in a common vocabulary, subsumption can be used to

automatically integrate them, thus mitigating the need for pairwise mappings.

Furthermore the system provides an interactive interface to let users choose

and browse the results and more importantly it can translate catalogs that

commit to these classifications using compiled mapping results.

• Social media domain. Semantic Wikis have demonstrated the power of com-

bining Wikis with Semantic Web technology. The KiWi system goes beyond

Semantic Wikis [86] by providing a flexible and adaptable platform for build-

ing different kinds of Social Semantic Software, powered by Semantic Web

technology. While the KiWi project itself is primarily focused on the knowl-

edge management domain, this demonstration shows how KiWi aspects like

the Wiki Principles and Content Versatility can be used to build completely

7



www.manaraa.com

different kinds of Social Software applications. The first application shown in

this project is an “ordinary” Semantic Wiki system preloaded with content

from a online news site. The second application called TagIT is a map-based

system where locations and routes on a map can be “tagged” by users with

textual descriptions, SKOS categories, and multimedia material. Both appli-

cations are built on top of the same KiWi platform and actually share the

same content.

With a growing amount of Semantic Web data, as observed by more and more

consumers of such data, there are numerous quality problems in Semantic Web data.

For example, DBpedia is a project aiming to extract structured content from the

information created as part of the Wikipedia project. DBpedia has been described

by Tim Berners-Lee, inventor of the WWW (including URIs, HTTP, and HTML),

as one of the more famous parts of the Linked Data project [15], as DBpedia allows

users to query relationships and properties associated with Wikipedia resources,

including links to other related datasets. Many quality issues are found in DBpedia

data set, e.g.

1. <http://www.dbpedia.org/resource/Harrow College,

http://www.dbpedia.org/ontology/School/upperAge,

2009.0>,

2. <http://www.dbpedia.org/resource/Wake Island,

http://www.dbpedia.org/ontology/Island/country,

http://www.dbpedia.org/resource/United States Air Force>.

The first piece of RDF data listed above means the maximum age for being enrolled

in Harrow College is 2009. The second means the country where Wake Island is

located in United States Air Force. The consequence for the Semantic Web will be

costly, if we have low quality data, because wrong answers to queries might make

intelligent agents making incorrect decisions on behalf of their users or directly

make human who believe these answers to take wrong actions. Therefore data

quality research on the Semantic Web becomes critically important for development

8



www.manaraa.com

of both the Semantic Web itself, information integration and further the whole Web

of information. Due to the problem of scale, e.g. DBpedia has over 10 million RDF

triples, it is impractical to have a human “scrub” all of the data. An automated

approach is needed, although few research efforts yet have been devoted in this area.

1.1 The Semantic Web

There are two key ideas to the Semantic Web: a flexible model for representing

information and a formal method of expressing the meaning of a vocabulary. The

first idea is expressed by the Resource Description Framework (RDF), a World Wide

Web Consortium (W3C) recommendation. Essentially, RDF is a directed, labeled

graph similar to a semantic network. Its main distinguishing features are an eXten-

sible Markup Language (XML) serialization syntax and the use of Uniform Resource

Identifiers (URIs) to name things. Often, URIs are simply Uniform Resource Lo-

cators (URLs), which can make it possible to retrieve more information about the

resource by retrieving information from the Web. It should be noted that RDF could

be used to express the information contained in a database or spreadsheet, but is

also flexible enough to express information with less regular structure. The concept

of an RDF property is a relation between subject resources and object resources.

The second idea of the Semantic Web - formally defining a vocabulary - is pro-

vided by ontologies. An ontology is ”a logical theory that accounts for the intended

meaning of a formal vocabulary” [41]. The Web Ontology Language (OWL) is

based on Description Logics (DL) and is compatible with RDF. In OWL, it is pos-

sible to define a US computer as a computer who has at least something made in

US (written USComputer ≡ Computer ⊓ ∃ madeIn.US in standard description logic

notation). Note, the Semantic Web vision does not presuppose that there is a single

shared ontology; on the contrary it assumes that there are many ontologies that

are interlinked. These ontologies may reuse terms from other ontologies, define new

terms using terms from other ontologies or simply express relationships between

their terms and those in other ontologies. Nevertheless, choosing to use ontologies

9



www.manaraa.com

does not automatically solve the information integration problem. As a matter of

fact, there are now tens of thousands of heterogeneous public ontologies. However,

these ontologies can be aligned using the same kinds of axioms that are used to

define the semantics of terms within ontologies. The alignments may be provided

by the original ontology author herself, or may be published by a third party who

saw a need to integrate ontologies.

The Semantic Web is a mesh of information linked up in such a way as to be

easily processable by machines, on a global scale. You can think of it as being an

efficient way of representing data on the World Wide Web, or as a globally linked

database. The semantic web data model has some commonalities with the model

of relational databases. A relational database consists of tables, which consists of

rows, or records. Each record consists of a set of fields. The record is nothing but

the content of its fields, just as an RDF node is nothing but the connections: the

property values. The mapping is very direct:

• a record is an RDF node;

• each field (column) name is an RDF property;

• the record field (table cell) is a value.

But RDF is much more flexible than relational tables. First, the current database

systems do not permit a large numbers of columns in a table. For example, DB2

and Oracle have a limit of 1012 columns. Using the RDF model, we can have an

arbitrary number of properties. Second, relational tables often have nulls in many

fields. Because the relational model states that every attribute has a value for a

given occurence (row/tuple) and sometimes the value is unknown, relational tables

have to put null as the value in the column. In addition to creating storage over-

head, nulls increase the size of the index and they sort high in the database index.

However the RDF model contains tuples for only those attributes that are present

in an object. Third, in case of frequent altering of the table to accommodate new

data and requirements, the schema evolution is expensive in the current database

systems. One of reasons why effective support for schema evolution is challenging

10



www.manaraa.com

for databases is that schema changes may have to be propagated, correctly and

efficiently, to instance data, views, applications and other dependent system com-

ponents. Ideally, dealing with these changes should require little manual work and

system unavailability. For instance, changes to a database schema S should be prop-

agated to instances data and views defined on S with minimal human intervention.

Comparatively, schema evolution in RDF model is easy by simply adding new tuples

corresponding to new attributes.

Besides the above flexibilities, one of the more important driving forces for the

Semantic Web, has always been the expression, on the Web, of the vast amount

of relational database information in a way that can be processed by machines.

Ontologies used in the Semantic Web, can be compared with database schemas.

Just like the schemas, they are essentially a data definition mechanism. However,

as ontologies are logic-based, they have stronger semantics than schemas and are

therefore more powerful in expressing relationships between various data attributes.

Since ontologies provide a shared and unambiguous understanding of the relevant

domain in a structured format, it makes it easier to automatic integrate different

data sources expressed using ontologies.

1.2 Quality Assessment on the Semantic Web

Corresponding to the two key ideas of the Semantic Web, the data quality assessment

on Semantic Web data falls into two categories: evaluation on ontologies and on

instance data. But they are not totally independent and each may help and rely on

the other. For example, to evaluate instance data, how the ontology that instance

data conforms to is defined will affect the design of the evaluation process. On

the other hand, the patterns or rules used in instance data evaluation certainly

can be valuable for modifying and enriching ontology. The quality of an ontology

may be evaluated by focusing on the different levels of the ontology. On the lexical

level, string matching can be used to compare concept identifiers used in ontology

with a “gold standard” set of strings that are considered a good representation of

11



www.manaraa.com

concepts of the problem domain. On the structure level it often requires manual

intervention by a trained human expert familiar with some philosophical notions,

such as essentiality, rigidity, unity; the expert should annotate the concepts of the

ontology with appropriate metadata tags, whereupon checks for certain kinds of

errors can be made automatically [20]. While the above two methods both need

significant human effort, the last one is to use automatic logic inference, such as

consistency and satisfiability checks, provided by appropriate reasoners.

The ontology serves as the vocabulary for describing instance data. Instance

data is a set of triples that is used to describe individuals. Since instance data is

the dominant part of the real world knowledge, it is more important to develop

a system to evaluate instance data quality and to determine when certain data

is ready for use. Because instance data often accounts for orders of magnitude

more data than ontology data and is more distributed and more error prone, it is

impractical to measure its data quality using approaches that need too much human

effort, like the first two methods for ontology evaluation described above. Thus we

need to automate the DQ measurement process. However, most real world instance

data does not provide a solid basis for applying the automatic approach similar to

that for ontology evaluation. There could be many reasons and some of them are

missing ontologies, poor ontology design, misunderstanding of ontology use, missing

or incomplete instance data, etc. Thus one of main motivations of my work is

to devise mechanisms to automate evaluation of Semantic Web data with minimal

requirement for precise and rigid ontology use.

Data quality research is important for the Semantic Web. One of the most ex-

citing things about the Semantic Web is the potential of moving Web search from

document relevance to query answering, because the Semantic Web knits knowledge

together with logic meanings instead of loosely structural linked as it in the Web.

It would be possible for computer algorithms to better interpret the data and use it

differently in query answering according to its quality. Thus there are several imper-

ative applications requiring correctness evaluation on triples, for example filtering

query results derived from low quality data, checking the quality of a new dataset

before integration and serving as input for other assessment, like trust.

12



www.manaraa.com

1.3 Contributions

Since the Semantic Web represents many points of view, there is no objective mea-

sure of correctness for all Semantic Web data. I designed algorithms that detect

potentially erroneous data by identifying data that appears to be anomalous. When

designing this kind of systems, I first determined if useful patterns do exist. Then

I realized that it is required to devise mechanisms to discover these patterns in rel-

atively easier situations, i.e. where the patterns are strong and rich in the data.

After that, I gradually improved the capability of discovering more potential pat-

terns and adapted the requirement on the data for learning in different situations.

The technical problem this dissertation addresses can be summarized as follows:

given a Semantic Web data set that uses terms from any ontology of the user’s

choice, identify aberrant data in it that could be potentially erroneous, even if I

cannot learn from any prior data that commits to these ontologies. In providing a

solution to this problem, I have developed a framework that allows us to investigate

this problem space in a formal manner. Further I have designed, implemented and

evaluated four algorithms that can solve this problem in different situations. My

dissertation specifically makes the following technical contributions:

• I have developed three algorithms to evaluate the data quality issues of object

property triples in different situations according to completeness and entire

quality of data. The first one is based on the closed world assumption. The

closed world assumption (CWA) treats the statements that are not in the data

as false. This algorithm is sufficient when the data set is well described, i.e.

almost all the instances in the domain have been given the value representing

their real world status for every property that can be applied on them. If

the data is not that well described, i.e. some facts are missing from the data

set, the second algorithm is developed for the situation where the open world

assumption (OWA) is applied. The open world assumption is the opposite of

the closed world assumption. The absence of a particular statement within the

web means, in principle, that the statement has not been made explicitly yet,

irrespectively of whether it would be true or not, and irrespectively of whether

13



www.manaraa.com

we believe (or would believe) that it is (or would be) true or not. This situation

is more common in real world data sets than the previous situation. The last

algorithm for evaluating object property triples is mainly designed to deal with

a data set that may have a significant portion of erroneous data. It needs the

system to take into account more aspects, such as the prior truth probability

of data from which the rules are learned and logic consistency among the rules

learned. Compared among these three algorithms, the one based upon CWA

has the fastest learning and minimal space requirement. The one based upon

OWA performs the best in OWA situation but has the worst space cost. The

strength of the third algorithm is to deal with noisy data and has an iterative

process. Using a new data structure to summarize the RDF graph, it still can

be done within reasonable amount of time, e.g. one hour for SWRC. Therefore

each one has its special advantages and use cases.

• I have demonstrated space of connections, and dependency rules, can con-

tribute to the evaluation of object property triples in order to increase accu-

racy of data quality problem. For clear demonstration, I developed different

mechanisms to represent a useful context, while they are based on similar

essence. In the algorithm designed for the data set under CWA, the context

is constructed as an RDF graph. In the algorithm designed for data sets un-

der OWA, the context is expanded to capture more and similar information

by merging the context of similar pairs of objects in the data. In addition,

the representation of context is simplified into semantic connections for the

data set that can have a significant portion of erroneous data. The semantic

connection is a sequence of labels on paths in an RDF graph. In the third

algorithm for evaluating object property triples, I further improved the pro-

cess of constructing context from per triple basis to a more efficient per graph

basis. Compared between the representations using graph and using semantic

connections, the former one needs much less space, since every edge is stored

once. However the latter one stores the semantic connections between pairs of

nodes and different semantic connections may share some of the same edges.

14



www.manaraa.com

Thus the latter one costs more space but contributes to better accuracy of

data quality problem by supporting to consider similarity between different

semantic connections.

• I have extended the concept of functional dependency from relational databases

into RDF graphs and used them to detect abnormal Semantic Web data. The

algorithm using the extended concept of functional dependency is so general

that it can deal with all data types of Semantic Web data, as opposed to only

object property triples. The algorithm also finds natural clusters of values of

each property, i.e. the values in a cluster have similar semantics. Further,

using these value clusters, the algorithm searches for value-clustered graph

functional dependency rules in Semantic Web data. Using valued-clustered

graph functional dependency rules, the system can uncover significantly more

erroneous data than the prior algorithms that can only be exposed after group-

ing values that are similar in semantics. Comparing this algorithm with the

prior three algorithms coping with object property triples, each of them has

its own advantages. The prior algorithms are based on context which gives

more information and so can derive better recall. Recall in information re-

trieval is the fraction of the documents that are relevant to the query that are

successfully retrieved. Here I use recall to measure the fraction of true errors

that are reported as abnormal by the system. Further the other algorithms

are better on detecting relational errors. The algorithm extending functional

dependency has the most general capability, since it can deal with both object

property triples and datatype property triples.

1.4 Thesis Overview

My detailed approach is described throughout this document, however, it maybe

useful to give a high level view of my approach and some considerations behind it

early on. In my research I need to answer the following questions:

1. Which different situations are there in real world Semantic Web data sets, for

15



www.manaraa.com

example whether the descriptions are relatively complete given the domain

that the data is focus on, whether the data set can be assumed generally

correct, etc.

2. What information do I use to describe the context of Semantic Web data and

how the context is useful for evaluating the data?

3. How do I learn the common characteristics in the contexts for similar data and

how do I present the characteristics into rules to build classifiers evaluating

Semantic Web data in different situations?

4. How do I construct these classifiers based upon learned rules and how these

classifiers can be used for differentiating normal and abnormal data?

The answer to the first question listed above is mainly discussed in Chapter

3. Given the problem, I classify real world data sets into several situations and

then I give design considerations of a practical system for each of them. From a

machine learning perspective, the system essentially is an unsupervised learning sys-

tem. Unsupervised learning refers to the problem of trying to find hidden structure

in unlabeled data. Since the examples given to the learner are unlabeled, there is no

error or reward signal to evaluate a potential solution. In machine learning theory,

the characteristics of a data set significantly affect the design or choice of machine

learning algorithms. Semantic Web data has both common and unique features

compared to other general data sets for machine learning. Specifically, Semantic

Web data has the following primary dimensions of characteristics. The first one is

that one often has to assume an open world. This classification coordinate is also

an important one in data quality research on conventional areas. It considers the

possibility of two assumptions in the data model, namely: the Closed World As-

sumption (CWA) and the Open World Assumption (OWA). The CWA assumes, in

the context of a logical formulation of the data model, that the data in a schema

are all and only the data that satisfy the data schema. On the contrary, the OWA

assumes that the data in the schema are a subset of the data satisfying the data

schema. I will discuss it more in the background introduction for data quality in

16



www.manaraa.com

Chapter 2. Because my research is to detect potentially erroneous data, in machine

learning theory, whether the data set is noisy or clean is another critical aspect for

consideration. For object property triples, I design three systems for different real

world Semantic Web data sets according to the dimensions introduced above. I also

notice that the data set size is a significant factor on the choice of machine learning

algorithms. Since it is a common aspect for designing most of the machine learning

algorithms, I consider it in most of the experiments for testing my algorithms rather

than design a special algorithm for large data sets.

The rest of the paper is organized as follows. Chapter 2 provides the readers

with an overview of various technologies and research areas that I have explored,

used and benefited from in this thesis. In this chapter, I discuss various technologies

that are the building blocks of the Semantic Web. In addition, I also survey work

from related research areas and describe how the work summarized is similar to

or different from the work I have done in my thesis. Most of the related research

work discussed in this chapter is related to my research as a whole. Other research

areas that are related to specific techniques used in my research will be compared

and contrasted when I discuss each technique in the thesis. Chapter 3 describes

the problem of detecting abnormal Semantic Web data. It provides the skeleton

of situations that the algorithms in the following chapters are trying to deal with.

Chapter 4 describes the algorithm to evaluate object property triples in the situation

where the closed world assumption is valid. The closed world assumption implies

that the data is richly described and thus useful patterns in it are relatively easier

to learn and discover. Chapter 5 describes the algorithm for the situation where

open world assumption is more appropriate. To better deal with the changes on

the assumption of unobserved data, the system attempts to collect more contextual

information and learn from existing data. Chapter 6 describes the algorithm for

noisy data learning. Traditional anomaly detection techniques focus on detecting

anomalies in new data after training on normal (or clean) data [29]. However, there

are many cases where we cannot find such a clean data for training and we need to

detect anomalies directly in a noisy data set. Thus this algorithm is designed for

detecting abnormal Semantic Web data in a data set that contains a large number

17



www.manaraa.com

of normal elements and a significant portion of abnormal data as well. Chapter 7

describes a general algorithm for detecting abnormal data in both object property

and datatype property triples. This algorithm extends the concept of functional

dependency from relational databases onto RDF graphs. It also searches value-

clustered graph functional dependency based on finding natural clusters of property

values. In each of the chapters 4 to 7, the content is organized in answering the

questions from 2 to 4 listed above. The experiments are all described along with

each algorithm in these chapters. The last chapter is the conclusion where I analyze

my thesis from a critical perspective to identify lessons learned and set directions

for future work.

18



www.manaraa.com

Chapter 2

Background

In this chapter I review important terminology and discuss work related to the

thesis. First, I provide a brief introduction to the Semantic Web languages. Next I

introduce some background about data quality. Then, I discuss some representative

works related to data quality on the Semantic Web.

2.1 Semantic Web Languages

The goal of the Semantic Web is to automate machine processing of web documents

by making their meanings explicit. To do this, Semantic Web researchers have devel-

oped languages and software that add explicit semantics to the content-structuring

aspects of XML. The Semantic Web extends the existing web with structure, and

provides a mechanism to specify formal and shareable semantics. A semantic web

language allows users to create ontologies [40], which specify standard terms and

machine-readable definitions. An ontology is a formal logic based description of a

vocabulary that allows one to talk about a domain of discourse. The vocabulary

is articulated using definitions and relationships among the defined concepts. As

ontologies use formal logic, the intended meaning of assertions using the vocabu-

lary is unambiguous, and therefore, it avoids the ambiguities of natural language.

Information resources (such as web pages and databases) then commit to one or

more ontologies, thus stating which sets of definitions are applicable. Further, since

19



www.manaraa.com

ontologies are expressed using formal logic, we can use software to ”infer” implicit

information in addition to what is explicitly stated. For example, an animals on-

tology might state that the class Dog is a subclass of Mammal and that the classes

Mammal and Fish are disjoint. These definitions communicate some of the meaning

of the terms in the resource, and can be used by logical reasoning systems to deduce

information that was not explicitly stated.

OWL is an ontology language designed specifically for the Web that is compatible

with XML, as well as other W3C standards. Specifically, OWL extends the Resource

Description Framework (RDF)[27] and RDF Schema [6], two early Semantic Web

standards endorsed by the W3C. Syntactically, an OWL ontology is a valid RDF

document and a valid XML document. This allows OWL to be processed by the

wide range of XML and RDF tools that are already available. In this section I first

describe RDF and RDF Schema which provide a starting point for designing OWL.

When introducing RDF, I also discussed our main perspective of RDF in this work.

Then I briefly introduce description logic (DL), the logic which OWL is based on,

and how OWL incorporates DL to specify semantics for web data.

2.1.1 RDF and RDF schema

Within the RDF data model all objects of interest are called resources. Resources

have properties. Each property has a property type and a property value. Property

values can be atomic, e.g. strings or numbers, or references to other resources, which

in turn may have their own properties. Information about resources is represented

in the form of triples. Each triple represents a single property of a resource. Triples

can be compared to simple sentences. Each triple consists of a subject, a predicate,

and an object. The subject determines the resource which is described by the triple.

The predicate determines a property type. The object contains the property value.

Triples can be visualized as node and arc diagrams. In this notation, a triple is

represented by a node for the subject, a node for the object, and an arc for the

predicate, directed from the subject node to the object node. A set of triples forms

a directed labeled graph by sharing subjects and objects.

20



www.manaraa.com

The subject, predicate and object of an RDF triple are RDF nodes. There are

three different types of nodes.

1. URI References are nodes that are identified by a globally unique identifier

following the URI syntax. URIs can be classified as locators (URLs), as names

(URNs), or as both. A uniform resource name (URN) functions like a person’s

name, while a Uniform Resource Locator (URL) resembles that person’s street

address. In other words: the URN defines an item’s identity, while the URL

provides a method for finding it. An example of URI is http://example.org/

wiki/URI#Examples_of_URI_references. Within RDF, URI references may

be used to identify any kind of object, including Web resources such as HTML

documents, real world entities such as products, organizations and persons,

and abstract concepts such as terms, classes, or property types. The globally

unique identification of a resource eases the integration of information about

a resource from distinct information providers. Therefore any resource which

might be described by multiple information providers should be identified by a

URI reference. A URI owner who assigns a URI reference to a resource should

provide representations of the resource. This enables information consumers to

retrieve authoritative information about resources by dereferencing URIs. For

instance, an information consumer might discover an RDF term on the Web

that he does not understand. In an attempt to understand the term, he could

dereference the term’s URI and retrieve a part of the ontology that defines

the unknown term and might relate the term to terms which the information

consumer understands.

2. Blank Nodes. For identifying resources that do not need to be referenced from

outside the RDF graph in which they occur, the RDF data model provides

blank nodes as a second, alternative identification mechanism. Blank nodes

are unique nodes that can be used in one or more RDF triples to identify a

resource. The term ”blank” refers to the fact that blank nodes do not have

identifiers. It is only possible to determine whether two blank nodes are the

same or not. Within implementations of the RDF data model, blank nodes are

21



www.manaraa.com

often assigned local identifiers for practical reasons. These identifiers do not

have any meaning at the data model level. As blank node identifiers are only

unique within the scope of the graph in which they occur, it is possible that

distinct blank nodes in different graphs use the same blank node identifier. For

instance, a blank node with the identifier BN1 might be used within one RDF

graph to refer to Bob’s address. A different blank node, which also uses the

identifier BN1, might be used in another graph to identify Peter’s address. In

order to avoid confusion between Bob’s and Peter’s addresses and to preserve

the meaning of both graphs, their blank nodes must be kept distinct. Thus,

when RDF graphs are merged within implementations, it might be necessary

to rename blank nodes in order to avoid collisions.

3. Literals are used to represent property values such as text, numbers, and dates.

Literals may be plain or typed. A plain literal is a string combined with an

optional language tag. The language tag identifies a natural language, such

as English or Chinese. A typed literal is a string combined with a datatype

URI. The datatype URI identifies the datatype of the literal. Datatype URIs

for common datatypes such as integers, floating point numbers and dates are

defined by the XML Schema datatypes specification 1.

Consider, for example, that we want to say Jeff advises Yang. This statement

will be represented in an RDF graph with a source that denotes Jeff, a directed edge

from source to destination that denotes the advises relationship and a destination

that denotes Yang. In RDF we need URIs (or URLs) to refer to Jeff and the advises

relationship. Yang can be either a literal or a URI. The following is one version

of the RDF graph represented in XML syntax. In the example below, the xmlns

attribute in the <RDF> tag gives the rdf: and ex: prefixes a qualified namespace.

XML Namespaces provide a method to avoid element name conflict. The namespace

is defined by the xmlns attribute in the start tag of an element. The namespace

declaration has the following syntax. xmlns:prefix=”URI”. When a namespace is

1http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

22



www.manaraa.com

defined for an element, all child elements with the same prefix are associated with

the same namespace.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ex="http://example.com/"

>

<rdf:Description rdf:about="http://example.com/jeff">

<ex:advises>Yang</ex:advises>

</rdf:Description>

</rdf:RDF>

RDF Schema (RDFS) extends the RDF vocabulary to allow describing tax-

onomies of classes and properties. All resources can be divided into groups called

classes. Classes are also resources, so they are identified by URIs and can be de-

scribed using properties. The members of a class are instances of classes, which is

stated using the rdf:type property, and the set of these instances is called the class

extension. rdfs:domain is an instance of rdf:Property that is used to state that any

resource that has a given property is an instance of one or more classes. A triple

of the form: P rdfs:domain C states that P is an instance of the class rdf:Property,

that C is an instance of the class rdfs:Class and that the resources denoted by the

subjects of triples whose predicate is P are instances of the class C. rdfs:range is an

instance of rdf:Property that is used to state that the values of a property are in-

stances of one or more classes. The triple P rdfs:range C states that P is an instance

of the class rdf:Property, that C is an instance of the class rdfs:Class and that the

resources denoted by the objects of triples whose predicate is P are instances of the

class C. The property rdfs:subClassOf is an instance of rdf:Property that is used

to state that all the instances of one class are instances of another. A triple of the

form: C1 rdfs:subClassOf C2 states that C1 is an instance of rdfs:Class, C2 is an

instance of rdfs:Class and C1 is a subclass of C2. The property rdfs:subPropertyOf

is an instance of rdf:Property that is used to state that all resources related by one

23



www.manaraa.com

Table 2.1: RDFS classes.
Element Class of rdfs:subClassOf rdf:type

rdfs:Resource all resources rdfs:Resource rdfs:Class
rdfs:Class all classes rdfs:Resource rdfs:Class
rdfs:Literal literal values rdfs:Resource rdfs:Class

rdfs:Datatype datatypes rdfs:Class rdfs:Class
rdf:XMLLiteral XML literal values rdfs:Literal rdfs:Datatype
rdf:Property properties rdfs:Resource rdfs:Class
rdf:Statement statements rdfs:Resource rdfs:Class

rdf:List lists rdfs:Resource rdfs:Class
rdfs:Container containers rdfs:Resource rdfs:Class

rdf:Bag unordered containers rdfs:Container rdfs:Class
rdf:Seq ordered containers rdfs:Container rdfs:Class
rdf:Alt containers of alternatives rdfs:Container rdfs:Class

rdfs:Container rdf: 1... properties rdf:Property rdfs:Class
MembershipProperty expressing membership

property are also related by another. A triple of the form: P1 rdfs:subPropertyOf

P2 states that P1 is an instance of rdf:Property, P2 is an instance of rdf:Property

and P1 is a subproperty of P2. The list of classes defined by RDFS is shown in the

Table 2.1.1.

2.1.2 RDF Graph

Because the Semantic Web has two languages: OWL and RDF, and an OWL on-

tology is a valid RDF document, this thesis mainly focus on Semantic Web data in

RDF forms. In this work, we will mainly investigate RDF data as a graph-based

data model. RDF is closely related to semantic networks [81]. Semantic networks

are a well-known and very flexible knowledge representation mechanism. Similar

to semantic networks, RDF statements can be expressed in a graph with labeled

nodes connected by directed and labeled edges. Essentially, the subject of a RDF

statement is the source node of the edge, the object is the target node of the edge

and the edge is the predicate relating the subject and the object. For example, the

following piece of RDF statements can be modeled as Figure 2.1.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns="http://www.example.org/~joe/contact.rdf#">

24



www.manaraa.com

 

http://www.w3.org/1999/02/22-rdf-syntax-ns#type 

http://xmlns.com/foaf/0.1/homepage 

http://xmlns.com/foaf/0.1/mbox 

http://xmlns.com/foaf/0.1/givenname 

http://xmlns.com/foaf/0.1/family_name 

http://xmlns.com/foaf/0.1/Person http://example.org/~joe/ 

http://example.org/~joe/contact.rdf#joesmith 

mailto:joe.smith@example.org Joe Smith 

Figure 2.1: RDF graph describing Joe Smith.

<foaf:Person rdf:about=

"http://www.example.org/~joe/contact.rdf#joesmith">

<foaf:mbox rdf:resource="mailto:joe.smith@example.org"/>

<foaf:homepage

rdf:resource="http://www.example.org/~joe/"/>

<foaf:family_name>Smith</foaf:family_name>

<foaf:givenname>Joe</foaf:givenname>

</foaf:Person>

</rdf:RDF>

After this example, I formally define some of the terminology that will be often

used in this work.

Definition 1. An RDF graph is G := (I, L,R,E), where three sets I, L and R

are instance, literal and property identifiers and the set of directional edges is E ⊆
I × R × (I ∪ L). An edge e ∈ E of form < s, p, o > has the start point s ∈ I, end

point o ∈ (I ∪ L) and the label r ∈ R on it. Let G be the set of all possible graphs

and G ∈ G. Let R− = {r−|r ∈ R}.

In this definition, I listed the parts constituting an RDF graph. More impor-

tantly, I point out the inverse property r−, given the property r. As I introduced in

section 2.1.1, properties have a direction, from domain to range. In practice, people

25



www.manaraa.com

hasTopic

h
as
T
o
p
ic

P3

P1 A1

A2

Lehigh

author

has-title

made

af
fi
li
at
io
n

member
Semantic Webinterest

paper2011
John

h
as
-n
am
e

Figure 2.2: Examples of definitions.

often find it useful to define relations in both directions: persons own cars, cars are

owned by persons. Whenever we have a triple using the property of one direction,

we can easily create an equivalent triple by using the inverse of original property

and flipping the original subject and object.

Definition 2. Given an RDF graph G := (I, L,R,E), a Path c in graph G is a tuple

< I0, r1, I1, ..., rn, In > where Ii ∈ I, ri ∈ R ∪ R−, and ∀i, 0 ≤ i < n, if ri ∈ R then

< Ii, ri+1, Ii+1 >∈ E or if ri+1 ∈ R− then < Ii+1, ri+1, Ii >∈ E; ∀j, if i ̸= j then

Ii ≠ Ij. Edges(c) = {r1, r2, ..., rn}. Length(c) = n. First(c) = I0. Last(c) = In.

Paths are acyclic and directional, but can include inverted relations of the form

r−.

Definition 3. Given an RDF graph G := (I, L,R,E), the set of all Paths from

node I0 to In is defined as: Paths(I0, In, G) = {pi|pi is a Path, F irst(pi) =

I0 and Last(pi) = In}.

To make our definitions clear, I give another example RDF graph (Fig. 2.2).

In this figure, the circles represent instances (I); the boxes represent literals (L);

the labels on the edges are relation identifiers (R) and the arcs between circles

and boxes are edges (E). An example of Path (Definition 2) in this RDF graph is

< P1, affiliation, Lehigh,member, P3 >. Note as stated in Definition 2,

26



www.manaraa.com

< A2, made−, P1, author−, A1, hasTopic, SemanticWeb > is also a Path on

which some inverse properties are involved. Thus the set of Paths between two nodes

A2 and SemanticWeb include the one shown above, the Path < A2, made−, P1,

affiliation, Lehigh, member, P3, interest, SemanticWeb > and the edge con-

necting them directly.

2.1.3 RDF Query Language SPARQL

Given a set of RDF data, one of the best ways to explore the data is through

SPARQL (pronounced ”sparkle”), an RDF query language. Its name is a recursive

acronym that stands for SPARQL Protocol and RDF Query Language. It was

standardized by the RDF Data Access Working Group (DAWG) of the World Wide

Web Consortium, and is considered a key semantic web technology. On 15 January

2008, SPARQL became an official W3C Recommendation. SPARQL allows users

to write globally unambiguous queries. For example, the following query returns a

person and the name of another he/she knows in the world:

PREFIX advises: <http://www.example.com/exampleOntology#advises>

PREFIX researchTopic:

<http://www.example.com/exampleOntology#researchTopic>

SELECT ?x ?name

WHERE {

?x advises ?y

?y researchTopic ?topicName

}

The example is assuming the ontology http://www.example.com/exampleOntology

to describe persons and their advises relationships. This illustrates the Semantic

Web’s vision of treating the Web as a single enormous database. This query can

be distributed to multiple SPARQL endpoints, computed distributedly, and results

gathered, a procedure known as federated query. We will explain this query by

introducing the preliminary blocks first.

27



www.manaraa.com

SPARQL closely resembles SQL and offers a relational, pattern-based approach

to retrieving data from a store. Consider a graph, G contains triples that share

objects or subjects (listed below).

James advises Jeff

Jeff advises Yang

Jeff researchTopic "Artificial Intelligence"

Yang researchTopic "Intelligent Agent"

Yang researchTopic "Semantic Web"

SPARQL’s approach to selecting values is to take triples and allow them to contain

variables (denoted by a ? or $ before a string). These structures - triple patterns

- match against real triples in the store, or inferred triples if you wish to use a

reasoner. Every time a triple pattern matches against a triple, it produces a binding

for each variable. For example, the triple pattern James advises ?y produces one

binding for ?y: Jeff. The pattern ?x advises ?y produces a richer table of bindings:

| x | y |

=================

1 | James | Jeff |

-------------------

2 | Jeff | Yang |

Each row in this table is a result for the query. Variables can also occur in multiple

patterns that together comprise a query. Patterns that overlap in variables narrow

down the results, while those that do not expand them. To return the earlier exam-

ple SPARQL query, the pattern ?x advises ?y and ?y researchTopic ?topicName

produces the following results:

| x | y | name |

=================================================

1 | James | Jeff | "Artificial Intelligence" |

--------------------------------------------------

28



www.manaraa.com

2 | Jeff | Yang | "Intelligent Agent" |

--------------------------------------------------

3 | Jeff | Yang | "Semantic Web" |

From the above results, we can see that a row exists in the results for every possible

substitution of values into the query that would yield a set of triples that exist in

the graph. Each row can contain only one binding, so Yang’s two research topics

fork the results.

Now let’s break down the earlier query into its parts to better understand the

syntax. Starting from the top we encounter the PREFIX keyword. PREFIX is

essentially the SPARQL equivalent of declaring an XML namespace: it associates

a short label with a specific URI. And, just like a namespace declaration, the label

applied carries no particular meaning. It’s just a label. A query can include any

number of PREFIX statements. The label assigned to a URI can be used anywhere

in a query in place of the URI itself; for example, within a triple pattern. In the

single triple pattern included in this query we can see the advises prefix in use as

a shorthand for http://www.example.com/exampleOntology\#advises, the full

URI of a property in the example ontology. The start of the query proper is the

SELECT keyword. Like its twin in a SQL query, the SELECT clause is used to

define the data items that will be returned by a query. The key function of the

WHERE clause is to describe a graph pattern which is a collection of triple patterns,

as introduced above, that identify the shape of the graph that we want to match

against.

2.1.4 OWL

RDF is a simple data model and as such it does not have any significant semantics.

RDF Schema addresses this shortcoming by allowing the user to define a vocab-

ulary consisting of rdfs:Class, rdf:Property, rdfs:subClassOf, rdfs:subPropertyOf,

rdfs:domain, and rdfs:range for use in RDF models. OWL extends RDF and RDFS.

Its primary aim is to bring the expressivity and reasoning power of description logic

to the semantic web. Each of the important RDF Schema terms are either included

29



www.manaraa.com

directly in OWL or are superseded by new OWL terms. Unfortunately, not every-

thing from RDF can be expressed in DL. For example, the classes of classes are

not permitted in DL, and some of the triple expressions would have no sense in

DL. That is why OWL can be only syntactic extension of RDF/RDFS (note that

RDFS is both a syntactic and semantic extension of RDF). To partially overcome

this problem, and also to allow layering within OWL, three species of OWL are

defined.

OWL Lite can be used to express taxonomy and simple constraints, such as 0 and

1 cardinality. It is the simplest OWL language and corresponds to the description

logic SHIF. SHIF consists of the basic DL Attributive Language with Complements

(ALC), plus transitivity, hierarchical roles, inverse roles, and functional roles. OWL

DL supports maximum expressiveness while retaining computational completeness

and decidability. The DL in the name shows that it is intended to support de-

scription logic capabilities. OWL DL corresponds to the description logic SHOIN

which includes ALC, plus transitive roles, hierarchical roles, nominals, inverse roles

and cardinality restrictions. OWL Full has no expressiveness constraints, but also

does not guarantee any computational properties. It is formed by the full OWL

vocabulary, but does not impose any syntactic constraints, so that the full syntactic

freedom of RDF can be used.

These three languages are layered in a sense that every legal OWL Lite ontology

is a legal OWL DL ontology, every legal OWL DL ontology is a legal OWL Full

ontology, every valid OWL Lite conclusion is a valid OWL DL conclusion, and

every valid OWL DL conclusion a valid OWL Full conclusion. The inverses of these

relations generally do not hold. Also, every OWL ontology is a valid RDF document

(i.e., DL expressions are mapped to triples), but not all RDF documents are valid

OWL Lite or OWL DL documents.

OWL classes are described through ”class descriptions”, which can be combined

into ”class axioms”. I first describe class descriptions and subsequently turn to class

axioms. Two OWL class identifiers are predefined, namely the classes owl:Thing and

owl:Nothing. The class extension of owl:Thing is the set of all individuals. The class

extension of owl:Nothing is the empty set.

30



www.manaraa.com

OWL distinguishes six types of class descriptions:

1. A class identifier (a URI reference).

2. An exhaustive enumeration of individuals that together form the instances of

a class. A class description of the ”enumeration” kind is defined with the

owl:oneOf property. The value of this built-in OWL property must be a list

of individuals that are the instances of the class. This enables a class to be

described by exhaustively enumerating its instances. The class extension of a

class described with owl:oneOf contains exactly the enumerated individuals,

no more, no less.

3. A property restriction. It describes an anonymous class, namely a class of

all individuals that satisfy the restriction. OWL distinguishes two kinds of

property restrictions: value constraints and cardinality constraints. A value

constraint puts constraints on the range of the property when applied to this

particular class description. A cardinality constraint puts constraints on the

number of values a property can take, in the context of this particular class

description.

4. The intersection of two or more class descriptions. An owl:intersectionOf state-

ment describes a class for which the class extension contains precisely those

individuals that are members of the class extension of all class descriptions in

the list.

5. The union of two or more class descriptions. An owl:unionOf statement de-

scribes an anonymous class for which the class extension contains those indi-

viduals that occur in at least one of the class extensions of the class descriptions

in the list.

6. The complement of a class description. An owl:complementOf statement de-

scribes a class for which the class extension contains exactly those individuals

that do not belong to the class extension of the class description that is the

object of the statement. owl:complementOf is analogous to logical negation:

31



www.manaraa.com

Table 2.2: OWL DL axioms and facts.
Abstract Syntax DL syntax Semantics

Classes

Class(A partial C1...Cn) A ⊑ C1 ⊓ ... ⊓ Cn AI ⊆ CI
1 ∩ ... ∩ CI

n

Class(A complete C1...Cn) A ≡ C1 ⊓ ... ⊓ Cn AI ≡ CI
1 ∩ ... ∩ CI

n

EnumeratedClass(A o1...on) A ≡ {o1, ..., on} AI = {oI1 , ..., oIn}
SubClassOf(C1 C2) C1 ⊑ C2 CI

1 ⊑ CI
2

EquivalentClasses(C1 ... Cn) C1 ≡ ... ≡ Cn CI
1 ≡ ... ≡ CI

n

DisjointClasses(C1 ... Cn) Ci ⊓ Cj = ⊥, i ̸= j CI
i ∩ CI

j = ∅, i ̸= j

Datatype(D) DC△I
D

Datatype Properties
DatatypeProperty(

U super(U1...super(Un) U ⊑ Ui UI ⊆ UI
i

domain(C1)...domain(Cm) > 1 U ⊑ Ci UI⊆CI
i ×△I

D

range(D1)...range(Dl) ⊤ ⊑ ∀U.Di UI ⊆ △I ×DI
i

[Functional]) ⊤ ⊑6 1U Ui is functional
SubPropertyOf(U1 U2) U1 ⊑ U2 UI

1 ⊆ UI
2

EquivalentProperties(U1...Un) U1 ≡ ... ≡ Un UI
1 ≡ ... ≡ UI

n

Object Properties
ObjectProperty(

R super(R1...super(Rn) R ⊑ Ri RI ⊆ RI
i

domain(C1)...domain(Cm) > 1 R ⊑ Ci RI⊆CI
i ×△I

D

range(C1)...range(Cl) ⊤ ⊑ ∀R.Di RI ⊆ △I ×DI
i

[inverseOf(R0)] R ≡ (R−
0 ) RI = (RI

0 )
−

[Symmetric] R ≡ (R−) RI = (RI)−

[Functional] ⊤ ⊑6 1R RI is functional
[InverseFunctional] ⊤ ⊑6 1R− (RI)− is functional
[Transitive]) Tr(R) RI = (RI)+

SubPropertyOf(R1 R2) R1 ⊑ R2 RI
1 ⊆ RI

2
EquivalentProperties(R1...Rn) R1 ≡ ... ≡ Rn RI

1 ≡ ... ≡ UI
n

Annotation
AnnotationProperty(S)

Individuals
Individual(

o type(C1)...type(Cn) o ∈ Ci oI ∈ CI
i

value(R1 o1)...value(Rn on) o, oi ∈ Ri {oI , oIi } ∈ RI
i

value(U1 v1)...value(Un vn)) o, vi ∈ Ui {oI , vIi } ∈ UI
i

SameIndividual(o1...on) o1 = ... = on oIi = ... = oIn
DifferentIndividual(o1...on) oi ̸= oj , i ̸= j oIi ̸= oIj , i ̸= j

the class extension consists of those individuals that are NOT members of the

class extension of the complement class.

Class axioms typically contain additional components that state necessary and/or

sufficient characteristics of a class. OWL contains three language constructs for

combining class descriptions into class axioms. rdfs : subClassOf allows one to

say that the class extension of a class description is a subset of the class exten-

sion of another class description. owl : equivalentClass allows one to say that a

32



www.manaraa.com

class description has exactly the same class extension as another class description.

owl : disjointWith allows one to say that the class extension of a class description

has no members in common with the class extension of another class description.

OWL distinguishes between two main categories of properties that an ontology

builder may want to define: object properties that link individuals to individuals

and datatype properties that link individuals to data values. An object property is

defined as an instance of the built-in OWL class owl:ObjectProperty. A datatype

property is defined as an instance of the built-in OWL class owl:DatatypeProperty.

More detailed OWL DL axioms and facts are summarized in Table 2.2. Elemen-

tary descriptions are atomic concepts and atomic roles. Complex descriptions can

be built from them inductively with concept constructors. In abstract notation, I

use the letters A and B for atomic concepts, the letter R for atomic roles, and the

letters C and D for concept descriptions. Concept descriptions in DL are formed

according to the following syntax rule:

C,D → A | (atomic concept)

⊤ | (universal concept)

⊥ | (bottom concept)

¬ A | (atomic negation)

C ⊓ D | (intersection)

∀ R.C | (value restriction)

∃ R.⊤ | (limited existential quantification).

To define a formal semantics of DL, we consider interpretations I that consist of a

non-empty set ∆I (the domain of the interpretation) and an interpretation function,

which assigns to every atomic concept A a set AI ⊆ ∆I and to every atomic role R

a binary relation RI ⊆ ∆I×∆I . The interpretation function is extended to concept

33



www.manaraa.com

descriptions by the following inductive definitions:

⊤I = ∆I

⊥I = ∅

(¬A)I = ∆I \ AI

(C ⊓D)I = CI ∩ DI

(∀R.C)I = {a ∈ ∆I |∀b.(a, b) ∈ RI → b ∈ CI}

(∃R.⊤)I = {a ∈ ∆I |∃b.(a, b) ∈ RI}

The above features are provided since OWL 1. OWL 1 was mainly focused on

constructs for expressing information about classes and individuals, and exhibited

some weakness regarding expressiveness for properties. In 2009, OWL 2 added some

new features. For example OWL 2 offers new constructs for expressing additional

restrictions on properties, new characteristics of properties, incompatibility of prop-

erties, property chains and keys. I will introduce property composition that can be

useful for this thesis. OWL 1 does not provide a means to define properties as a com-

position of other properties, as uncle could be defined as brother of father. Thus, it

is not possible to propagate a property (e.g.; locatedIn) along another property (e.g.;

partOf). The OWL 2 construct ObjectPropertyChain in a SubObjectPropertyOf

axiom allows a property to be defined as the composition of several properties. For

example locatedIn ◦ partOf ⊑ locatedIn means that if x is located in y and y is

part of z then x is located in z, for example a disease located in a part is located in

the whole. I use the notation ◦ to represent a composition between two properties

in this thesis.

2.2 Data Quality and Data Cleansing

The terms Information Quality (IQ) and Data Quality (DQ) are often used in-

terchangeably and in this work we focus on the technical aspects, so we do not

make explicit distinction between them. Data quality has serious consequences, of

far-reaching significance, for the efficiency and effectiveness of organizations and

34



www.manaraa.com

businesses. In its report on data quality, the Data Warehousing Institute ([27]) esti-

mates that data quality problems cost U.S. businesses more than 600 billion dollars

a year. To be processable and interpretable in a effective and efficient manner, data

has to satisfy a set of quality criteria. I first give some commonly recognized data

quality dimensions. Then I discuss several methodologies that have been developed

before that provide a rationale for the optimal choice of such activities and tech-

niques. Finally, more detailed technical analysis of data cleansing approaches are

discussed.

2.2.1 Data Quality Dimensions

Data quality has the following major dimensions: accuracy, completeness and con-

sistency. Besides the major ones, time-related dimensions are currency, timeliness

and volatility. In this work, I mainly focus on the errors on the Semantic Web that

can be categorized into major data quality dimensions.

Accuracy is defined as the closeness between a value v and a value v′, considered

as the correct representation of the real-life phenomenon that v aims to represent.

As an example if the name of a person is John, the value v′ = John is correct, while

the value v = Jhn is incorrect. Two kinds of accuracy can be identified, namely

syntactic accuracy and semantic accuracy. Syntactic accuracy is the closeness of

a value v to the elements of the corresponding definition domain D. In syntactic

accuracy we are not interested in comparing v with the true value v′; rather, we are

interested in checking whether v is any one of the values in D, whatever it is. So,

if v = Jack, even if v′ = John, v is considered syntactically correct, as Jack is an

admissible value in the domain of persons’ names. Syntactic accuracy is measured by

means of functions, called comparison functions, that evaluate the distance between

v and the values in D. Edit distance is a simple example of a comparison function,

taking into account the minimum number of character insertions, deletions, and

replacements to convert a string s to a string s′. More complex comparison functions

exist, for instance taking into account similar sounds or character transpositions.

Semantic accuracy is the closeness of the value v to the true value v′. For example,

35



www.manaraa.com

if we say the director of movie Casablanca is Cameron, then it is a semantic error.

Because Cameron is an real director in this domain, it is an admissible value and

so would not be considered as a syntactic error. However Curtiz is the director

of Casablanca and then it is a semantic error. Note that, while it is reasonable to

measure syntactic accuracy using a distance function, semantic accuracy is measured

better with a < yes, no > or a < correct, incorrect > domain. Consequently,

semantic accuracy coincides with the concept of correctness. In contrast with what

happens for syntactic accuracy, in order to measure the semantic accuracy of a

value v, the corresponding true value has to be known, or, else, it should be possible,

considering additional knowledge, to deduce whether the value v is or is not the true

value. From the above arguments, it is clear that semantic accuracy is typically more

complex to calculate than syntactic accuracy. When it is known a priori that the rate

of errors is low, and the errors result typically from typos, then syntactic accuracy

tends to coincide with semantic accuracy, since typos produce values close to the true

ones. As a result, semantic accuracy may be achieved by replacing an inaccurate

value with the closest value in the definition domain, under the assumption that it

is the true one.

Completeness can be generically defined as “the extent to which data is of suf-

ficient breadth, depth, and scope for the task at hand” [96]. Three types of com-

pleteness are identified by Pipino et al. [79]. Schema completeness is defined as the

degree to which entities and attributes are not missing from the schema. Column

completeness is defined as a measure of the missing values for a specific property or

column in a table. Population completeness evaluates missing values with respect to

a reference population. In the following we refer to the relational model. Intuitively,

the completeness of a table characterizes the extent to which the table represents

the corresponding real world. Completeness in the relational model can be charac-

terized with respect to: (i) the presence/absence and meaning of null values, and

(ii) the validity of one of the two assumptions called the open world assumption and

closed world assumption [85]. In order to characterize completeness, it is important

to understand why a model has null values, i.e. the value is missing. Indeed, a

value can be missing either because it exists but is unknown, or because it does not

36



www.manaraa.com

exist at all, or because it may exist but it is not actually known whether it exists

or not. The three types of null values are not existing, existing but unknown, not

known if existing [9]. In logical models for databases, such as the relational model,

there are two different assumptions on the completeness of data represented in a

relation instance r. The closed world assumption (CWA) states that only the values

actually present in a relational table r, and no other values represent facts of the

real world. In the open world assumption (OWA) we can state neither the truth

nor the falsity of facts not represented in the tuples of r. As I briefly introduced in

the introduction, these two assumptions also are important effects on the Semantic

Web and so our consideration of system design takes them into account as well.

The consistency dimension captures the violation of semantic rules defined over

(a set of) data items, where items can be tuples of relational tables or records in a file.

With reference to relational theory, integrity constraints are an instantiation of such

semantic rules. In statistics, data edits are another example of semantic rules that

allow for the checking of consistency. Integrity constraints are properties that must

be satisfied by all instances of a database schema. Although integrity constraints

are typically defined on schemas, they can at the same time be checked on a specific

instance of the schema that presently represents the extension of the database.

Therefore, we may define integrity constraints for schemas, describing a schema

quality dimension, and for instances, representing a data dimension. Most integrity

constraints are dependencies. The following are main types of dependencies.

• Key Dependency. This is the simplest type of dependency. Given a relation

instance r, defined over a set of attributes, we say that for a subset K of the

attributes, a key dependency holds in r, if no two rows of r have the same K-

values. For instance, an attribute of social security number can serve as a key

in any relation instance of a relation schema Person. When key dependency

constraints are enforced, no duplication will occur within the relation.

• Inclusion Dependency. Inclusion dependency is a very common type of con-

straint, and is also known as referential constraint. An inclusion dependency

over a relational instance r states that some columns of r are contained in other

37



www.manaraa.com

columns of r or in the instances of another relational instance s. A foreign key

constraint is an example of inclusion dependency, stating that the referring

columns in one relation must be contained in the primary key columns of the

referenced relation.

• Functional Dependency. Given a relational instance r, let X and Y be two

nonempty sets of attributes in r. The functional dependency X → Y is

satisfied in r, if the following holds: for every pair of tuples t1 and t2 in r, if

t1.X = t2.X, then t1.Y = t2.Y , where the notation t1.X means the projection

of the tuple t1 onto the attributes in X.

Integrity constraints discussed above are within the relational model as a specific

category of consistency semantic rules.

However, where data is not relational, consistency rules can still be defined. As

an example, in the statistical field, data coming from census questionnaires have a

structure corresponding to the questionnaire schema. The semantic rules are thus

defined over such a structure in a way very similar to relational constraints. rules.

Data edits are example of semantic rules that allow for the checking of consistency.

Data edits are less powerful than integrity constraints because they do not rely on a

data model like the relational one. Nevertheless, data editing has been done exten-

sively in the national statistical agencies since the 1950s, and has revealed a fruitful

and effective area of application. Data editing is defined as the task of detecting

inconsistencies by formulating rules that must be respected by every correct set of

answers. Such rules are expressed as edits, which denote error conditions. As an

example, an inconsistent answer to a questionnaire can be to declare marital status

= “married”, age = “5 years old”. The rule to detect this kind of errors could be the

following: if marital status is married, age must not be less than 14. The rule can

be put in the form of an edit, which expresses the error condition, namely, marital

status = married and age < 14.

An important aspect of data is their change and update in time. The currency

dimension concerns how promptly data is updated. If the residential address of a

person is updated, i.e. it corresponds to the address where the person lives, then

38



www.manaraa.com

the currency is high. Volatility characterizes the frequency with which data vary in

time. For instance, stable data such as birth dates have volatility equal to 0, as they

do not vary at all. Conversely, stock quotes, a kind of frequently changing data,

have a high degree of volatility due to the fact that they remain valid for very short

time intervals. Timeliness expresses how current data is for the task at hand. The

timeliness dimension is motivated by the fact that it is possible to have current data

that are actually useless because they are late for a specific usage. For instance, the

timetable for university courses can be current by containing the most recent data,

but it cannot be timely if it is available only after the start of the classes.

2.2.2 Data Quality Methodologies

Data quality methodologies are often defined as a set of guidelines and techniques

that, starting from the input information concerning a given reality of interest,

defines a rational process for using the information to measure and improve the

quality of data of an organization through given phases and decision points. Data

quality methodologies may be classified according to several criteria:

1. Data-driven vs. process-driven. This classification is related to the general

strategy chosen for the improvement process. Data-driven strategies are based

on using data sources exclusively to improve the quality of data; they make use

of the data quality activities. In process-driven strategies, the data production

process is analyzed and possibly modified to identify and remove the root

causes of quality problems. General purpose methodologies may adopt both

data-driven and process-driven strategies, with different depth according to

the specific methodology.

2. Measurement vs. improvement. Methodologies are needed for measuring /

assessing the quality of data, or to improve their quality. Measurement and

improvement activities are closely interrelated, since only when DQ measure-

ments are available, is it possible to conceive techniques to be applied and

priorities to be established. As a consequence, the boundary between the

39



www.manaraa.com

methodologies for measurement and improvement is sometimes vague. In the

following, we will use the term measurement when we address the issue of

measuring the values of a set of data quality dimensions in a database (or a

set of databases). We use the term assessment or benchmarking when such

measurements are compared to reference values, to enable a diagnosis of the

quality of the database.

3. General-purpose vs. special-purpose. A general-purpose methodology covers

a wide spectrum of phases, dimensions, and activities, while a special purpose

methodology is focused on a specific activity (e.g., measurement, object iden-

tification), on a specific data domain (e.g., a census, a registry of addresses of

persons), or specific application domains (e.g., biology).

4. Intraorganizational vs. interorganizational. The measurement and improve-

ment activity concerns a specific organization, or a specific sector of the orga-

nization, or even a specific process or database. Otherwise, it concerns a group

of organizations (e.g., a group of public agencies) cooperating for a common

goal (e.g., in the case of public agencies, providing better services to citizens

and businesses).

Based on these criteria, the methods that this work primarily focuses on can be

defined as follows. First it is data-driven, because I do not put any restriction or

assumption of how the data set is generated or which section of data flow the data

set is in. Second, I mainly focus on measurement. Although sometimes when my

system reports an erroneous triple and the way to correct it is obvious, the system is

assessed by the performance of detecting erroneous triples instead of correcting them.

Third, my system is designed for general purpose use, because the system is to deal

all kinds of Semantic Web data from different domains. Fourth, because my system

tries to deal with data set integrated or contributed from different organizations

(e.g. DBpedia), it concerns multiple organizations.

40



www.manaraa.com

2.2.3 Data Cleansing

In the previous subsections, I have introduced the data quality dimensions and the

general techniques about it. In this subsection, I will discuss the detailed solutions

for it, i.e. data cleansing, data cleaning, or data scrubbing. The term refers to

identifying incomplete, incorrect, inaccurate, irrelevant, etc. parts of the data and

then replacing, modifying, or deleting this dirty data. The techniques mainly can

be categorized as follows.

1. Looking up: Fixing incorrect information such as the postcode matching the

suburb is usually done by comparing each record to the correct values in an-

other table. For example, to correct all the postcodes in the data, assuming

that the suburb entered is correct, we would write SQL code that would com-

pare the postcode of the record against a table of postcode + suburb + state

that we may have obtained. Such a process would likely generate a list of

records where the suburb was not found, requiring a manual investigation and

correction of the data.

2. Parsing: Parsing in data cleansing is performed for the detection of syntax

errors. A parser decides whether a string of data is acceptable within the

allowed data specification. This is similar to the way a parser works with

grammars and languages.

3. Data transformation: Data transformation allows the mapping of the data

from its given format into the format expected by the appropriate application.

This includes value conversions or translation functions, as well as normalizing

numeric values to conform to minimum and maximum values. Correcting the

formatting of the data is usually done using some pretty simple SQL perhaps

combined with logic programming. Users need to decide the format they wish

to apply to the data, for example, whether they would like the suburb in title

case or all capitals. While this is much less important than getting the data

actually right, it can help to make the communications look more professional.

41



www.manaraa.com

4. Duplicate elimination: Duplicate detection requires an algorithm for deter-

mining whether data contains duplicate representations of the same entity.

Usually, data is sorted by a key that would bring duplicate entries closer to-

gether for faster identification. If the duplicates have some identical values for

selected properties, finding duplicates is a fairly easy task for someone who

knows a little about the SQL database language. However it is more difficult

to find similar records that really are the same real world object, but are not

listed in exactly the same way in the database. For instance the following two

records may actually be the same person:

ID |First name|Surname| Address1 | Suburb |Postcode|State

3442| John |Citizen| PO Box 33 | Frankston| 3199 |VIC

682 | Jonathon |Citien |14 Beach Road| FRANKSTON| 3199 |VIC

Finding records such as the above calls for what is usually called “Fuzzy Match-

ing”. Because we cannot confidently use logic to determine whether or not two

records are the same in the case given above, usually fuzzy matching would

leave the data as is, but produce an exception report, highlighting likely du-

plicate records. Although it is possible to set up customized de-duplication

process to remove all the duplicates and clean up all the records automat-

ically, users typically prefer to manually process the data cleanup to ensure

that only the correct data is kept, and that all associated pieces of information

are transferred across to the valid record e.g. customer payment history.

5. Statistical methods: By analyzing the data using the values of mean, standard

deviation, range, or clustering algorithms, it is possible for an expert to find

values that are unexpected and thus erroneous. Although the correction of

such data is difficult since the true value is not known, it can be resolved by

setting the values to an average or other statistical value. Statistical methods

can also be used to handle missing values which can be replaced by one or more

plausible values, which are usually obtained by extensive data augmentation

algorithms.

42



www.manaraa.com

Of the above popular methods used to clean data, statistical methods are the

most general and difficult. Below is a set of general methods that can be utilized

for statistical error detection:

1. Statistical: Identifying outlier fields and records using the values of mean,

standard deviation, range, etc., based on Chebyshev’s theorem [13, 18], con-

sidering the confidence intervals for each field [52]. Chebyshev’s theorem is as

follows. Let X be a random variable with finite expected value µ and non-zero

variance δ2. Then for any real number k > 0,Pr(|X − µ| ≥ kσ) ≤ 1
k2
. Using

Chebyshev’s theorem, outlier values for particular fields are identified based

on automatically computed statistics. For each field the average and the stan-

dard deviation are utilized and based on Chebyshevs theorem those records

that have values in a given field outside a number of standard deviations from

the mean are identified.

2. Clustering: Identify outlier records using clustering based on Euclidian (or

other) distance. Existing clustering algorithms provide little support for iden-

tifying outliers [55, 72, 105]. However, in some cases clustering the entire

record space can reveal outliers that are not identified at the field level inspec-

tion (chapter 11 in [52]). The main drawback of this method is computational

time. Standard clustering algorithms have high computational complexity. For

large record spaces and large number of records, the run time of the clustering

algorithms is prohibitive.

3. Pattern-based: Identify outlier fields and records that do not conform to exist-

ing patterns in the data. Combined techniques (partitioning and classification)

are used to identify patterns that apply to most records [53]. A pattern is de-

fined by a group of records that have similar characteristics (”behavior”) for

p% of the fields in the data set, where p is a user-defined value (usually above

90).

4. Association rules: Association rules with high confidence and support define

a different kind of pattern. As before, records that do not follow these rules

43



www.manaraa.com

are considered outliers. The power of association rules is that they can deal

with data of different types.

The term association rule was first introduced by Agrawal et al. [3] in the context

of market basket analysis. In this analysis, the data set is defined as the basket data

B = {b1, b2, ..., bn}, where each basket bi ∈ I is a collection of items, and where

I = {i1, i2, ..., ik} is a set of k elements. An association rule in the database B is

defined as follows.

i1 ⇒ i2 is an association rule [3] if:

1. i1 and i2 occur together in at least s% of the n baskets, then s is called the

support of the rule;

2. and, of all baskets containing i1, at least c% contain i2, then c is called the

confidence of the rule.

This definition extends easily to A⇒ B, where A and B are disjoint sets of items

instead of single items. In general A is referred to as the antecedent (or left-hand

side) of the rule, and B as the consequence (or right-hand side) of the rule. In real-life

cases and spoken language terms, an association rule is phrased as: “50% of people

who buy diapers, also buy beer, and 20% of all buyers buy diapers.” In this case,

diapers and beer are the items, the confidence of the rule is 50%, and the support of

the rule is 10%. Association rules of this type are also referred to in the literature

as classical or boolean association rules. In practice, the information in many, if

not most, databases is not limited to categorical attributes, but also contains much

quantitative data. Unfortunately, the definition of categorical association rules does

not translate directly to the case of quantitative attributes. It is therefore necessary

to provide a definition of association rules for the case of a database containing

quantitative attributes. Srikant and Agrawal [88] extended the categorical definition

to include quantitative data. The basis for their definition is to build categorical

events from the quantitative data by considering intervals of the numeric values.

Thus, each basic event is either a categorical item or a range of numerical values.

Such rules are called quantitative association rules [88]. A more formal definition

44



www.manaraa.com

is given there, and confidence and support of the rule are slightly redefined. An

example of such a rule is “People who spent on bread between $3-$5, and on milk at

the same time between $1-$2, usually spend between $1.5-$2 on butter in the same

transaction.” A stronger set of rules is defined in [56] as ratio-rules. A rule under this

framework is expressed in the form: “Customers typically spend 1: 2: 5 dollars on

bread: milk: butter”. This time the strength of the rule allows multiple applications,

including data cleansing and outlier detection. However, the paper does not exploit

this idea. It is only mentioned that the power of ratio-rules to reconstruct data

could support the data cleansing process. Eigen system analysis is used to find these

rules and induces the strength of the rules as well as a computational overhead. A

series of generalizations of quantitative association rules are defined in [10]. Ordinal

association rules were defined by the authors [65] and used to find rules that gave

more information (e.g., ordinal relationships between data elements). A further

generalization is made in [77] where a general form of rules are considered: body ⇒
head, where body is a conjunction of atomic conditions of the form attribute op

value, and head is a single atomic condition of the form attribute op value, where

op ∈ {≤,=,≥}. These generalized association rules yield a special type of patterns,

so this method is, in general, similar with the pattern based method.

2.3 Data Quality on the Semantic Web

This section contains two parts. The first part is about how to annotate the quality

information on existing Semantic Web data. The other part is about how to evaluate

the quality of Semantic Web data.

2.3.1 Quality Annotation

The basic principle of quality annotation is that the data contains explicit info of

the validity of individual pieces of data, or triples in the case of RDF. This section

details various way to add annotations of validity directly to the triple themselves,

such annotations are hereby referred to as “quality annotations.” For the sake

45



www.manaraa.com

 

 

 

 

 

 

  

example:document 
example:isAbout 

example:person 

Figure 2.3: A basic example triple.

of clarity, they all contain a way of marking the triple portrayed in Fig. 2.3 as

imperfect. It should be noted though that because of the methods different, so are

the semantic implications of them. As such, all of the figures to be presented are

not exactly semantically equivalent to each other.

Reification is a feature in RDF that, even though it is fundamentally represented

with triples, is a deviation from the basic graph/triple structure. Reification means

the process of reifying an RDF statement (triple) by giving it an unique identifier

as a whole: this enables it to be used as a part of another triple, either the subject

or the object. If used as the subject, instead of the regular (subject - predicate - ob-

ject) structure it would be ((subject - predicate - object) - predicate - object). This

allows native support for more complicated semantic structures such as “Weather

was sunny at noon”, which would otherwise be non-trivial to implement with triples.

Reification can be used for quality annotations, by marking triple-specific metadata

to support or doubt the validity of triples [26]. A simple method of quality annota-

tion markup with reification is shown in Fig. 2.4. Statements have been marked as

uncertain by linking them to a general “uncertain resource” via an object property.

This method is general in the sense that the properties can be arbitrary and there

can be many of them. For example, we could easily give a numerical confidence value

for the uncertainty with a literal-valued triple. However, reification has the problem

on the complexity of this method, because reification partly breaks the general triple

structure of (subject-predicate-object) statements model in RDF. This means that

reification should be separately taken into account in any application that uses the

data. The most common use cases for semantic web data, such as recommendation

systems and automatic data enrichment, are considerably harder to implement and

computationally more expensive with data that contains reified statements [42, 11].

46



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

example:validity 

example:document 
example:isAbout 

example:person 

example:uncertain 

Figure 2.4: Data quality annotation with reification.

One method to achieve the wanted goal is to use named graphs for storing extra

information about a triple [97]. Basically this means that instead of triples, the data

store utilizes quads, where the subject-predicate-object combination additionally has

a named graph (URI) attached. Once the triples are linked to named graphs, we can

store information about the graphs: for example, their origin, method of creation and

authors. This kind of extra information is usually called provenance, and the method

is widely used on the Semantic Web by many large organizations. The method is

somewhat similar to the reification method described above, but is simpler and more

elegant as it clutters the data less and is more intuitive and transparent. However,

it is more suited to provide provenance than direct quality information since that

is its original purpose. If we use it for quality information instead, like in Fig. 2.5,

we must tag the whole graph with the same quality information, or alternatively

divide the graph into a multitude of subgraphs. Having the ability to annotate

single triples and resources is useful, but dividing the graph into small subgraphs is

counterproductive if we also want to annotate the provenance of a graph as a whole.

This is a problem as both quality and provenance information should be allowed

to coexist in the same RDF dataset. An alternative is to simply track the quality

of whole datasets instead of smaller units such as triples or resources [44], but this

would be a much less broad and general approach.

For certain applications, linking uncertain data into an existing knowledge base

is enough to solve the data quality annotation problem. If we have a knowledge base

we know we can trust, and some unknown data whose quality we want to annotate,

47



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

example:document 
example:isAbout 

example:person 

example:Graph1 

example:Graph1 
example:validity 

example:uncertain 

Figure 2.5: Quality annotation with named graphs in quads.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

example:document example:person 

local:person 

example:isAbout owl:sameAs 

Figure 2.6: Data mapping using local instances.

it’s sometimes enough to create a mapping between these datasets instead of actually

figuring out confidence values and other metadata. Fig. 2.6 illustrates this process:

we create a local instance of every possibly interesting resource, and link these to

a pre-existing knowledge base using, for example, the property owl : sameAs if

we consider them to be exactly the same, or some other relation. In the case of

reference ontologies and classes, this relation is often rdfs : subClassOf , as it is

a very strong thing to say that two classes as exactly the same. This marks them

as being semantically similar and links them to the whole knowledge base, whereas

local instances deemed as invalid are left to be orphans or semantic “dead ends”,

without links to meaningful resources. Due to the nature of this method, it has

limited use. Primarily it can be used in the context of automatic annotation and

converting legacy data over to the semantic web [94]. In this application, everything

is about linking old data to new data, essentially the equivalence of resources.

48



www.manaraa.com

2.3.2 Semantic Web Data Evaluation

Most existing work on semantic web data evaluation focuses on ontology evaluation

which emphasizes syntax validation and logical consistency analysis. Sabou et al.

[82] predict the correctness of ontology axioms using the corroboration of the axioms

(both explicit and entailed) from other ontologies, but the corroboration requires

the statements to be exactly the same as the original axiom, which is limited and

unreliable considering unreliable data existing on the Web.

The first group of work on instance data evaluation focuses on if the data usages

are explicitly consistent with the syntax of the ontologies. Before consuming seman-

tic web data, many applications and users deploy automated tools to find problems

early. Typically users will deploy a syntax checker, such as the W3C RDF Validator

(http://www.w3.org/RDF/Validator/). It checks whether an RDF document con-

forms to RDF/XML syntax. The validation is backed by the ARP parser of Jena

[68]. This tool contributes to a critical step in instance data evaluation - parsing

RDF data to RDF triples. The second type of errors is logical inconsistency which

may be checked by deploying reasoner tools such as Pellet. These tools typically

provide techniques aimed at finding provable (rather than possible) issues. For in-

stance, a logic problem could be that a URI type of class A is used as the subject

of a property whose domain is declared a class type B which is declared as disjoint

with A.

The other category of works focuses on checking if the data uses the vocabularies

in the ontologies appropriately on semantics. For instance, a semantic error could

be that the topic of a paper published on Semantic Web conference is chemistry.

Obviously all the syntax here is correct, so any syntax based or logic based mecha-

nisms will not work and can not give any suggestions. Tao et al. [91] captured some

symptoms of potential data quality issues by using a conjunctive combination of the

presence and absence of certain triple patterns in certain dataset. They listed three

sub-categories:

1. Potential issues related to an individual type. In this category of potential

issues, there are three specific symptoms.

49



www.manaraa.com

(a) First, we are given an individual i, and all of its types {t1, t2, ...} in the

deductive closure (DC) of instance data, including the declared types and

inferred types. Then, (i) a logical inconsistency will occur if there is a

declared owl : disjointWith relation between a pair of ti and tj; (ii) no

issue will occur if there is an rdfs:subClassOf relation between any pair

of ti and tj; (iii) A potential issue will occur otherwise. The reason of the

potential issues here is that no subset or disjoint relation can be found

between two expected types of an individual: one comes from the types

declared in DC and ontologies and the other is inferred from properties

rdfs:domain, rdfs:range and owl:allValuesFrom in DC.

(b) Second, given an individual i, assume its types declared in the instance

data are {td1, td2, ...}, it may also have some types declared in instance

data or the referenced ontologies {tdo1, tdo2, ...}, if any two types tdi and

tdoj from these two groups of types having a subset relation (not the

same), a potential issue will occur because this instance is declared as

both an instance of a class and its super class at the same time. The

reason of the potential issues here is that an individual has redundant

individual types.

(c) Third, we are given an individual i, and its declared types {t1, t2, ...} in
instance data and referenced ontologies. If there is a type ti which has

some sub-classes {ti1, ti2, ...} in instance data including inferred data, but

i is not known to be an instance of any of the subclasses, a potential issue

will occur. The explanation of this symptom is as follows. An individual

is stated to be an instance of a class which is a non-leaf node in the class

hierarchy. Usually this is because the instance data author forgets to

provide more specific type after assigning the individual a general type,

or the author does not know the instance’s specific type. The reason for

the potential issues here is that the instance has a non-specific individual

type.

2. Potential issues related to a property value. In this category of potential issues,

50



www.manaraa.com

there are two possible symptoms.

(a) We are given an individual i that has type c, let m be the number of

triples (i, p, x) in the data, where p is a property. If there is a cardinality

restriction in the ontology, requiring all instances of c to have at least

n values for property p, an issue will occur if m < n. The reason that

causes the potential issues here is the violation of the owl:cardinality

or owl:minCardinality restriction. Apparently, the authors are making

the closed world assumption. Otherwise, they are saying there are some

triples for which the values are unknown.

(b) The next symptom is that, similarly, an issue would occur if there are

more (i, p, x) triples in the data than expected by referenced ontologies.

The reason that causes the potential issues here is the violation of the

owl:cardinality or owl:maxCardinality restriction. In this case, the au-

thors are assuming there are no owl:sameAs statements (explicit or im-

plicit) between the x values.

3. Other application-specific potential issues. These expectations require a flex-

ible and extensible evaluation approach, so that users can customize their

own evaluation criteria to check issues beyond syntax, logical consistency, and

those frequently encountered potential issues. For example, some applications

may require instances of some classes to always be named, i.e. they must be a

URI instead of a blank RDF node. In other situations, users may require all

instance descriptions to have an annotation property rdfs:label.

For each of the above symptoms, the authors give a SPARQL query to find such

data that satisfies the conditions. However, as the authors pointed out, the list of

issues is far from exhaustive.

Another type of work on evaluating instance data is based on the context where

the data is used, for example in the context of the results for a query or within

the data that uses a group of similar predicates. To rank query results, Stojanovic

51



www.manaraa.com

et al. [90] pointed out that there are two differences among returned relation in-

stances for answers to a query. They are the specificity of the instantiation of the

ontology and the inference process. The specificity is on the basis of the number

of interpretations of the given relation instance. A relation type is defined by the

relation that is instantiated in the relation instance. The specificity of a relation in-

stance can be interpreted as the measure of its relevance for the user’s query. When

the specificity of a relation instance is higher, then the relevance is higher as well.

Anyanwu et al. [7] classified the ranking criteria for complex relationship search

results into semantic and statistical metrics. One of the semantic metrics is a query

context by allowing users to interact with a graphical visualization of the ontology

to specify the query context. However most common users have difficulties in un-

derstanding an RDF graph and each term in it, since even knowledge representation

professionals frequently disagree on the meaning of the same entity or expression

in different ontologies. Another semantic metric used by Anyanwu et al. is trust.

When computing trust weights of a semantic association, the strength of an associ-

ation is only as strong as its weakest link. However trust values on every link were

empirically assigned in their work. The statistical metrics are the measures of rarity

and popularity of each component in the semantic association. A semantic associa-

tion represents semantic similarity between paths connecting different resources in

an RDF model. I observe that the metrics in these two works are both rankings of

resources from a global perspective rather than from each queries’ specific perspec-

tives. Franz et al. [35] provided an approach via tensor decomposition to classify

predicates into pre-defined number of groups and compute authoritative scores for

resources with respect to every group. This is a finer grained authoritative measure-

ment than previous works in this group. However the ranking is still focusing on

resources as others instead of to give rankings for a triple, especially when a query

consists of triples across multiple domains.

To the best of my knowledge, the above discussions are complete lists of previous

works that are closely related to this thesis. Ideally, there are some existing works

for comparison with my systems on performance. However, it can be noted in above

discussions that there is no existing work focus on the exactly same topic as ours,

52



www.manaraa.com

i.e. automatically detecting abnormal Semantic Web instance data. First, some

works related to the Semantic Web only focus on ontologies or uses some manually

created ad-hoc rules for detecting potential quality issues. So the scope that systems

focus are different. Second, the works detecting quality issues in other types of

data, e.g. databases, can not be easily adapted to deal with Semantic Web data.

Further it is also hard to convert RDF data to relational databases. Thus these

traditional data cleansing algorithms cannot be used for comparison. Third, most

outlier detection approaches focuses only on numerical data by checking if some

values are markedly away from the majority. However my systems are designed to

deal with object property values and all types of datatype property values (both

strings and numbers). Thus it would be unfair to compare them. Therefore, in

this thesis, I did not compare the performance of my systems with other existing

systems on detecting abnormal Semantic Web data. But to evaluate each part of

my systems, I designed and conducted various, extensive experiments to check the

usefulness and necessity of each (see each chapter for algorithms).

53



www.manaraa.com

54



www.manaraa.com

Chapter 3

The Problem of Detecting

Abnormal Semantic Web Data

To better define our problem of detecting abnormal Semantic Web data, I will

introduce its definition by comparing with outlier detection in relational databases.

Specifically, I begin with a discussion of the concept of ouliers and follow with a

review of the general methods used in outlier detection. Next I give the definition

of abnormal Semantic Web data before I describe the design considerations of my

approaches for detecting abnormal Semantic Web data.

3.1 Outliers

Despite the importance of data collection and analysis, data quality remains a per-

vasive and thorny problem in almost every large organization. The presence of

incorrect or inconsistent data can significantly distort the results of analyses, of-

ten negating the potential benefits of information-driven approaches. As a result,

there has been a variety of research over the last decades on various aspects of data

cleaning: computational procedures to automatically or semi-automatically identify

- and, when possible, correct - errors in large data sets. Outlier detection is an im-

portant area of such research. Although outliers are often considered as an error or

55



www.manaraa.com

noise, they may carry important information. Detected outliers are candidates for

aberrant data that may otherwise adversely lead to model misspecification, biased

parameter estimation and incorrect results. It is therefore important to identify

them prior to modeling and analysis.

An exact definition of an outlier often depends on hidden assumptions regarding

the data structure and the applied detection method. Yet, some definitions are

general enough to cope with various types of data and methods. Hawkins [46]

defines an outlier as “an observation that deviates so much from other observations

as to arouse suspicion that it was generated by a different mechanism”. Barnet and

Lewis [13] indicate that “an outlying observation, or outlier, is one that appears to

deviate markedly from other members of the sample in which it occurs, similarly,

Johnson [52] defines an outlier as an observation in a data set which appears to be

inconsistent with the remainder of that set of data”. Wainer [95] also introduced

the concept of the “fringelier,” referring to “unusual events which occur more often

than seldom.” The definition by Grubbs [39]: “An outlying observation, or outlier,

is one that appears to deviate markedly from other members of the sample in which

it occurs”, is more often referenced.

Outliers can arise from several different mechanisms or causes. Anscombe [6]

sorts outliers into two major categories: those arising from errors in the data, and

those arising from the inherent variability of the data. Not all outliers are illegitimate

contaminants, and not all illegitimate observations show up as outliers [13]. It is

therefore important to consider the range of causes that may be responsible for

outliers in a given data set. Osborne and Overbay [76] summarized them as follows.

1. Outliers from data errors. Outliers are often caused by human error, such as

errors in data collection, recording, or entry. The example about radiation

tests conducted by Transportation Security Administration that I gave in the

beginning of the introduction chapter is one of these errors caused by human

entry.

2. Outliers from intentional or motivated mis-reporting. Sometimes participants

56



www.manaraa.com

intentionally report incorrect data to experimenters or surveyers. A partic-

ipant may make a conscious effort to sabotage the research [48], or may be

acting from other motives.

3. Outliers from sampling error. Another cause of outliers or fringeliers is sam-

pling. It is possible that a few members of a sample were inadvertently drawn

from a different population than the rest of the sample.

4. Outliers from standardization failure. Outliers can be caused by research

methodology, particularly if something anomalous happened during a particu-

lar subject’s experience, e.g. observations in a classroom the day before a big

holiday recess.

5. Outliers from faulty distributional assumptions. Incorrect assumptions about

the distribution of the data can also lead to the presence of suspected outliers

[50]. For example scores on classroom tests where students are well-prepared

may be a flat distribution.

6. Outliers as legitimate cases sampled from the correct population. It is possi-

ble that an outlier can come from the population being sampled legitimately

through random chance. It is important to note that sample size plays a role in

the probability of outlying values. Within a normally distributed population,

it is more probable that a given data point will be drawn from the most densely

concentrated area of the distribution, rather than one of the tails [30, 83].

As listed above, the most important source of outliers is from data errors which

is also the most important motivation to detect such outliers. Thus it is also critical

to know the causes of original data errors, especially in a database. Maydanchik

[67] summarized them and here I list some main causes of them in the following.

1. Initial data conversion. Databases rarely begin their life empty. During the

data conversion it is the data structure that is usually the center of attention.

The data is mapped between old and new databases. However, since the

business rule layers of the source and destination systems are very different,

57



www.manaraa.com

this approach inevitably fails. The converted data, even if technically correct,

is often inaccurate for all practical purposes.

2. System consolidations. Database consolidations are the most common oc-

currence in the information technology landscape. They take place regularly

when old systems are phased out or combined. And, of course, they always

follow company mergers and acquisitions. The data is often merged into an

existing non-empty database, whose structure can be changed little or none

whatsoever. However, often the new data simply does not fit!

3. Manual data entry. Despite high automation, much data is (and will always

be!) typed into the databases by people through various forms and interfaces.

To err, after all, is human!

4. Batch feeds. Batch feeds are large regular data exchange interfaces between

systems. The source system that originates the batch feed is subject to fre-

quent structural changes, updates, and upgrades. Testing the impact of these

changes on the data feeds to multiple independent downstream databases is a

difficult and often impractical step.

5. Real-time interfaces. The basic problem is that data is propagated too fast.

There is little time to verify that the data is accurate. Further, the data comes

in small packets, each taken completely out of context. A packet of data in

itself may look innocent, but the data in it may be totally erroneous.

6. Data purging. When data is purged, there is always a risk that some relevant

data is purged by accident.

3.2 Outlier Detection

Outlier detection methods have been suggested for numerous applications. Besides

data cleansing, they also include credit card fraud detection, clinical trials, vot-

ing irregularity analysis, network intrusion, severe weather prediction, geographic

58



www.manaraa.com

information systems, athlete performance analysis, and other data-mining tasks.

Typically, these methods focus on quantitative data.

Quantitative data is integers or floating point numbers that measure quantities

of interest. Quantitative data may consist of simple sets of numbers, or complex

arrays of data in multiple dimensions, sometimes captured over time in time series.

Quantitative data is typically based in some unit of measure, which needs to be

uniform across the data for analysis to be meaningful; unit conversion (especially

for volatile units like currencies) can often be a challenge. Statistical methods for

outlier detection are the foundation of data cleaning techniques in this domain: they

try to identify readings that are in some sense “far” from what one would expect

based on the rest of the data. In recent years, this area has expanded into the more

recent field of data mining, which emerged in part to develop statistical methods

that are efficient on very large data sets.

3.2.1 Univariate

The simplest case to consider - and one of the most useful - is to analyze the

set of values that appear in a single column of a database table. Many sources

of dirty quantitative data are discoverable by examining one column at a time,

including common cases of mistyping and the use of extreme default values on

numeric columns. This single-attribute, or univariate, case provides an opportunity

to introduce basic statistical concepts in a relatively intuitive setting.

It can be difficult to define the notion of an outlier crisply. Given a set of values,

most data analysts have an intuitive sense of when some of the values are “far

enough” from “average” that they deserve extra scrutiny. There are various ways to

make this notion concrete, which rest on defining specific metrics for the center of

the set of values (what is “average”) and the dispersion of the set (which determines

what is “far” from average, in a relative sense).

The center, or core, of a set of values is some “typical” value that may or may

not appear in the set. The dispersion, or spread, of values around the center gives

a sense of what kinds of deviation from the center are common. The most familiar

59



www.manaraa.com

metric of dispersion is the standard deviation, or the variance, which is equal to the

standard deviation squared.

The “center/dispersion” intuition about outliers defines one of the most familiar

ideas in statistics: the normal distribution, sometimes called a Gaussian distribution,

and familiarly known as the bell curve. For example, a typical definition of an outlier

is any value that is more than 2 standard deviations from the mean.

3.2.2 Multivariate

As an example of multivariate case, consider a table of economic indicators for

various countries, which has a column for average household income, and another

column for average household expenditures. In general, incomes across countries

may range very widely, as would expenditures. However, one would expect that in-

come and expenditures are positively correlated: the higher the income in a country,

the higher the expenditures. So a row for a country with a low per-capita average

income but a high per-capita average expenditure is very likely an error, even though

the numbers taken individually may be well within the normal range. Multivariate

outlier detection can flag these kinds of outliers as suspicious.

Multivariate techniques are analogous in some ways to ideas I introduced in

the univariate case, but the combinations of variables make things both more com-

plicated to define and interpret, and more time-consuming to compute. Most ap-

proaches extend the basic measures of center and dispersion to the multivariate

setting.

The problem with this extension is the use of a single number for the dispersion

around the center. That single number can only define distributions that are sym-

metric about the center, which is not enough to capture x/y correlations like the

one I introduced between income and expenditures. To capture these correlations

more generally, a multivariate normal distribution is defined by a multivariate mean

and a two-dimensional covariance matrix, which can be thought of as a generaliza-

tion of the univariate variance to multiple variables. Recall that the variance of a

single variable is the standard deviation squared. The covariance matrix essentially

60



www.manaraa.com

captures the variance of each variable individually, and the correlation (covariance)

between pairs of variables.

3.3 Abnormal Semantic Web data

A major share of Semantic Web data originates from existing relational databases

and is lifted by mapping database schema elements to Web ontologies. For exam-

ple GoodRelations [47] is the ontology for publishing the details of products and

services in a way friendly to search engines, mobile applications, and browser exten-

sions. Because of the process of lifting existing data sources to the RDF data model

and Web ontologies, existing data quality problems from the original representation

would be usually replicated. So on the one hand, all the reasons that cause the

data quality issues and make them outliers discussed in the previous section are also

possible reasons for quality issues of the data on the Semantic Web. On the other

hand, the transformation of data from original forms to the Semantic Web form also

can bring in quality issues due to inappropriate extraction, mapping, creation, etc.

A typical semantic knowledge extraction from text has the following steps. First

instances or named entities are identified and extracted. Then they are mapped to

the object identifier in the Semantic Web data. Meanwhile the relation between this

entity with other entities mentioned in the text are also mapped to predicate in the

ontologies. Finally the triples consisting of these entities and relations are created.

While sophisticated conversion scripts and middleware components can filter out

some of the problems, the negative impact of data quality issues will grow on the

Web of Data, because the data will be used in more applications and in more unique

contexts. The amount and impact of any problems will increase accordingly.

Since the previous definitions of outliers have been so many and general, I try

to give a specific definition from the Semantic Web unique perspective. Meanwhile

the definition is also general enough to cover almost all major types of quality issues

on the Semantic Web. Further the definition ideally needs to give easy guidance

of quality control. The triples on the Semantic Web are the atomic information

61



www.manaraa.com

unit. Different from free text or other semi-structured documents, recall a statement

consists of three parts: subject, predicate and object. In other words it describes a

relationship between two resources or a resource and a literal. For a piece of data

consisting of these three parts, there are eight possible situations of the errors on the

three positions, from the one that none of the three is erroneous to the one that all

the three are erroneous. So among them, seven combinations would cause the triple

be erroneous as a whole and they are listed in Table 3.1. Then we can generalize all

these possible errors that a triple can have into three types (shown in Table 3.1).

1. The subject or object is incorrect, i.e. it is not supposed to be put into the

statement. For example the triple < U.S., residesIn, South America >

has an incorrect object (since U.S. is located in North America) and the triple

< James Cameron, directorOf, Star Wars > has an incorrect subject (since

George Lucas is the director of Star Wars). However, unless we know the data

creator’s original intention, both types of errors are interchangeable. For in-

stance, the above two examples can be claimed to have either type of error.

To make the above both errors more general, we can categorize them as that

the pair of subject and object has no significant relation with respect to the

predicate defined in the ontology vocabulary. In this definition, the above two

examples have the same error that the subject and object do not have the

relationship indicated by the predicate used. We emphasize that it is with

respect to the ontologies, because any two objects can be put together and be

linked by an arbitrary relation, e.g. hasRelation. But the data is described

in accordance to certain ontology vocabulary and so using the concepts other

than those defined in that vocabulary would have no meaning and cause con-

fusion. Thus the significant relation that we focus on is tied to the ontologies

and the data set where the statement is in.

2. The actual relationship between the subject and the object is not consistent

with the predicate used in this triple, i.e. the subject and object should be re-

lated by another predicate. For example, < Bill Clinton, motherOf, Chelsea

Clinton > has an incorrect predicate usage.

62



www.manaraa.com

Table 3.1: All possible errors that a triple can have.
subject predicate object type
× 1

× 2
× 1

× × 3
× × 3

× × 3
× × × 3

3. The combination of the previous two types of errors, i.e. more than one

elements among the subject, the predicate and the subject are incorrectly

used in this statement. These errors can be detected if using the solutions for

the previous two types of errors.

Having the above list of all possible errors that could occur in Semantic Web

data, then I discuss abnormal Semantic Web data in corresponding to these errors

as follows.

1. In the above, I have generalized the error occurred in the subject or the object

field as a type of error that there is no relationship between the subject and

the object. Then the abnormal Semantic Web data that could be an heuristic

of this type of error would be this symptom. Given a triple in the data set,

most of pairs of objects in the same data set that are similar to the pair of

objects in this triple have no relationship.

2. In the above, I have generalized the error occurred in the predicate field as a

type of error that there is an incorrect relationship between the subject and

the object. Then the abnormal Semantic Web data that could be an heuristic

of this type of error would be this symptom. Give a triple in the data set,

most of pairs of objects in the same data set that are similar to the pair of

objects in this triple have a different relationship.

3. All the other type of errors could show the combination of the above two

symptoms.

63



www.manaraa.com

In sum of these three symptoms, an abnormal Semantic Web triple, is one that

has an abnormal relation that appears to deviate markedly from other pairs of similar

objects in the data set which it occurs. The deviation could be because either there

is no relation between other similar pairs of objects or there is a different relation is

often used between other similar pairs of objects. This definition gives clear guidance

on the process to detect such deviations, i.e. checking the relationship between the

subject and the object.

3.4 Design Considerations of a Practical System

The key theme of the work is to develop a set of data structures and algorithms that

will give suggestions on the correctness of the Semantic Web instance data. Since

the Semantic Web represents many points of view, there is no objective measure

of correctness for all Semantic Web data. Therefore, we focus on the detection of

abnormal triples, i.e., triples that violate certain rules learned from most of the data

or from a set of verified data. This in turn is used as a heuristic of a potential data

quality problem. We recognize that not all abnormal data is incorrect (in fact, in

some scenarios the abnormal data may be the most interesting data) and thus leave

it up to the application to determine how to use the heuristic. This explanation

of abnormality is exactly the same as the core idea of outlier detection. Thus

some approaches for outlier detection for data cleansing can inspire my solutions,

such as univariate/multivariate correlation discussed above, association rules and

pattern-based (both are discussed in section 2.2.3), etc. For example, the approach

to be designed can connect multiple variables/columns, i.e. multiple properties in

Semantic Web data, and discover patterns across them; the rules to be discovered can

also comprise an antecedent (or left-hand side) of the rule, and the consequence right-

hand side) of the rule, as the association rules. All these methods can be generalized

as discovering characteristics of data first and then apply the characteristics to

detecting anomalous data that does not follow the characteristics. Starting from this

general methodology, we need to adapt it to the Semantic Web data environment

64



www.manaraa.com

in order to detect abnormal Semantic Web data defined above. Because ontologies

serve as the formal vocabulary for Semantic Web data, the correctness in this work

is with respect to certain ontologies that the data conform to, i.e. if the semantics

are correctly conveyed by descriptions of objects using the vocabulary from the

ontologies.

Compared to the database outlier detection, there are a number of challenges in

apply similar approaches to Semantic Web data. First, typical relational database

is organized into relational tables. A table consists of a group of similar records

that describing the same set of properties for these objects. However, RDF model

is more flexible and there is no table for grouping objects. Thus it is a challenge to

find a natural group of objects and properties for them in order to discover potential

common characteristics. Second, the schema in database is comparable to the on-

tologies that a Semantic Web data set conforms to. However the ontologies provide

more deeper semantics and logics that can be used to infer new knowledge. Thus it

is a challenge to take into account the advantages provided by the ontologies. Third,

the open world assumption is more often applied to Semantic Web data compared to

databases. Thus it is a challenge to better interpret the difference between existing

data and non-existing data for learning true potential characteristics underlying the

data set. Fourth, the errors that could occur in Semantic Web data can be caused by

more reasons and in more forms. For example the faulty inference based on incorrect

sameAs triples in Semantic Web data could produce new incorrect triples. Fifth,

traditional database outlier detection mainly focus on numeric values. The essential

idea of using statistics, data mining techniques in database outlier detection is still

valid to detecting abnormal Semantic Web data. However, it is a challenge to find

a general method to detect all types of values in Semantic Web data.

To give suggestions on correctness of RDF data, the two main technical goals of

this work are (1) how to find potential probabilistic rules underlying RDF data that

conform to certain ontologies and (2) how the system can use it in different scenarios.

To test if the system succeeds in the goal, we can input Semantic Web data to let

the system apply learned probabilistic rules and then check the difference between

inference results and the triples’ actual state (ground truth). After the probabilistic

65



www.manaraa.com

rules are validated, the inference results of the system can be used as report of a

degree of abnormality. Specifically, for different situations of real world Semantic

Web data, I designed the following four algorithms.

1. In the first situation, the system relies on a good training data set and a rela-

tively strong assumptions - the closed world assumption. The most important

two questions I want to answer are as follows. First, given a piece of data,

can its contextual data serve as evidence that it is “normal”? Second, are

there indeed some useful patterns existing in the contexts. Because the essen-

tial idea of evaluation is based on the contextual information of data, a good

training data set requires two characteristics. (1) It needs to be a well de-

scribed data set, i.e. instances on the RDF graph are well connected through

using predicates (edges) and reusing object values (nodes); (2) the data is

verified or assumed to be generally correct. The strong assumption is that the

closed world assumption applies to the data, i.e. all relevant statements not

in the data are false. This assumption is also a typical categorized situation in

traditional data cleansing (I discussed this data quality dimensions in section

2.2.1). In this case, we categorize possible errors that a triple can have into

two types. For each type of error, the system uses classification techniques to

differentiate the data based on the features learned from the referenced data.

The features include numeric metrics measuring the credibility of the relation

between the subject, the object and patterns measuring the type of relation

that is the most likely, etc.

2. In the second situation, we want to weaken the system requirements on training

data set and assumptions. In other words, the closed world assumption does

not apply to the data set, i.e. we cannot assume that the relevant statements

not in the data are false. As previous research on data cleansing under the

open world assumption has shown [9], a value can be missing either because

it exists but is unknown, or because it does not exist at all, or because it may

exist but it is not actually known whether it exists or not. Thus under this

situation, I devise a learning model that tries to avoid interpreting the data

66



www.manaraa.com

into binary 0/1 scheme, i.e. it encodes each positive/existing sample as 1 and

interprets the remaining/non-existing data as 0. In addition, I try to improve

features used in classifiers in previous work by making them concise enough so

that the system can become an more integrated general classifier for all types

of possible errors that a object property triple can have.

3. In the previous two systems, I recognized that in reality, some data sets cannot

be treated as generally correct for learning. And to verify the fact that a data

set is generally correct, it may require lots of human effort to manually check

them and thus is impractical. Thus the third case that I want the system to

deal with is where there is no generally correct data set for learning in advance.

The previously described scenarios focus on detecting anomalies in new data

after training on normal (or clean) data. However, there are many cases where

we cannot find such a clean data for training and we need to detect anomalies

directly in a noisy data set. Thus a new algorithm needs to be designed for

detecting abnormal Semantic Web data in a data set that contains a large

number of normal elements and a significant portion of abnormal data as

well. The system can try to discover patterns similar to previous systems.

But, importantly, if the data set that patterns are extracted from contains a

significant number of errors (i.e. it could have significant portion of unreliable

or noisy data), the patterns would be not very reliable and should be better

weighted according to the reliability. Then I should have a mechanism to

automatically adjust them, e.g. iteratively, based upon other aspects, e.g.

consistency among patterns. Through this process, the patterns are expected

to be gradually differentiated and so the data can be differentiated according

to the support of patterns.

4. The patterns discovered and used by my previous works are mainly based

on the explicit connections between data, i.e. the reused values. Thus we

need an iterative approach to gradually differentiate data by majority voting,

because the patterns are limited and not strong enough, But for data sets

where few statements are explicitly connected through reusing the same values

67



www.manaraa.com

and, more generally, for most data using datatype values, the patterns that can

be found can be even more limited. Therefore we need to find more patterns

and might only focus on strong patterns for efficiency both on searching and

applying these rules. Starting to think about this problem, I notice that the

patterns discovered by my previous systems are close to the concept of data

dependency, especially functional dependencies. As I introduced in section

2.2.1, some dependencies have been put into practice for data quality research

before. Therefore, a good intended extension on data dependency should

be a promising approach for the Semantic Web data too. The extension is

expected to cover most of the patterns in previous system as well as some new

patterns that could be unique in RDF data. Because RDF data can be viewed

as a graph data model, I also can extend functional dependency into value-

clustered graph functional dependency. They are devised to capture more

implicit correlations among values in different statements. If I can abstract

them into probabilistic integrity constraints, they would greatly improve the

system capability on detecting abnormal Semantic Web data.

The following chapters will discuss each of these algorithms in details respectively.

68



www.manaraa.com

Chapter 4

Data Correctness under the

Closed World Assumption

This chapter introduces my first effort towards high quality Semantic Web data.

Because it is the first step, I want to make sure that there are some features in

data that can be used to automatically categorize the quality of different portions.

Therefore I start with a relatively simple situation with relatively strong assump-

tions. I refer to this scenario as detecting abnormal Semantic Web data under closed

world assumption [100]. The closed world assumption is the presumption that what

is not currently known to be true, is false. Specifically, on the Semantic Web data

domain, the closed world assumption means that for every object in the domain, the

values of every applicable property for this object are given in the data. Dividing

real world situations according to this dimension is not new in data quality research,

it is also one of important aspects for traditional data quality dimensions (discussed

in section 2.2.1). As I have discussed in the previous sections, the main technical

problems that a solution tries to solve are: 1) how to find common characteristics

underlying the data; 2) how to use these characteristics to detect the data that does

not follow them. The solution to be introduced in this chapter is based on discov-

ering characteristics from a training data set first and then comparing between the

training dataset and the data being investigated. The training dataset has to satisfy

69



www.manaraa.com

two requirements. First it is generally correct. This requirement means that the

data set could have few errors and no consistent repeated errors, i.e. no systematic

errors. Although it is hard to quantify the percentage of errors that is allowed,

based on our experiments (will be introduced in subsequent subsections), when the

erroneous data is less than 5%, it usually would not affect the general patterns in

the data set. The second requirement to the data set is that it is comprehensively

described with respect to the vocabulary of the ontologies, i.e. the data gives much

contextual information for each triple. I emphasize that the comprehensiveness is

important here and it is an approximate interpretation of the closed world assump-

tion: given the ontology vocabularies, most of objects in the domain which the

dataset describes have rich usages of all available concepts and properties.

4.1 Approach

The Semantic Web has an advantage over the databases in that it supports semantics

specified entailment. Semantic Web data follows the logics in the ontologies that

are used as vocabulary to describe them. If we take entailment as a corroboration,

data that is entailed by existing knowledge is more likely to be correct than which is

not entailed. However in real world datasets it is not surprising that the ontologies

can not be found, ontology definitions are too simple, or data is created without

much deep logic consideration. All these real world situations would make invalid

the basic conditions for logic inference. Thus since this kind of corroboration is

too strong and so limited, I need to find some weaker corroboration. The problem

of detecting abnormal data can naturally be viewed as a classification problem:

classifying data into two general categories, either normal or abnormal. Compared

to formal logic inference, classification needs weaker conditions and is more general.

It is also a typical perspective often used in traditional statistical data cleansing,

especially the pattern-based methods for error detection (discussed in section 2.2.3).

This type of methods combine techniques, such as partition, classification, etc., to

identify patterns that apply to most data. To build a classifier, features need to

70



www.manaraa.com

be identified that can be used to build the classifier at first. As defined in section

3.3, the errors in Semantic Web data can be generalized as incorrect relational

descriptions between the subject and object in triples. Thus, a candidate feature

for a relational classifier is the context for the subject/object pair that consists of

various direct/indirect relations between them.

There are also several observations about using contextual information to assess

correctness. First, a Semantic Web dataset normally is about a certain topic, on

a certain domain and for a certain usage. Second, the number of ontologies used

in the dataset is commonly limited to a few, i.e. concepts and properties for this

domain are limited. Thus the data in it are probably described and used in certain

common ways. If a piece of data contains some errors caused by accidental input

or misunderstanding of ontologies, it would be expected to show certain abnormal

contextual evidence compared to the majority of the dataset that are similar to

it. Thus there could exist some patterns that I am looking for. If potential pat-

terns underlying the whole dataset can be discovered, the patterns can be used to

detect some abnormal data or give suggestions for the data to evaluated. On the

other hand, due to incompleteness and inconsistency, if we can not find sufficient

information proving that the data is correct, it can be considered as of low data

quality.

The above observations are drawn from several real world data sets. To make

them more concrete and operable for choosing data set, I summarized them into

three assumptions on the data that this approach takes. First the most part of

data set is correct. In other words those datasets that are intentionally generated

to mislead systems, e.g. link farms on the Web, are not considered in our case,

because it would be easy to find that the whole dataset is useless. Second most

knowledge in a dataset has supporting evidence to some extent, e.g. there are some

information for colleagues, co-authors and students around a professor to support

the claim that the professor has a significant relation with his/her affiliation. Third,

the context around a pair is similar to the contexts around other pairs having the

same relationship. For example if a professor advises a student, the patterns of

interactions between them, e.g. the project or paper they co-worked in, are also

71



www.manaraa.com

Construct Context 

Significant Relation 

Classifier

Relation Type 

Classifier

Semantic Web data

Abnormal Semantic 

Web data

No 

No Matched 

Relation 

Construct Context

Semantic Web training data

Extract Features for 

Significant Relation

Build Significant 

Relation Classifier

Extract Features for 

Significant Relation

Extract Features for 

Relation Type

Build Relation Type 

Classifier

Extract Features for 

Relation Type

System Runing System Training

Figure 4.1: The work flow of the system under closed world assumption.

expected to exist between other pairs of advisor and advisee.

Given the above initial thoughts of the design of this approach, Fig. 4.1 shows

the work flow of this approach. The general process is as follows. For each triple,

first, the system builds a context. Second, the system uses a classifier to test if

there is a significant relation between the two instances in the triple. Third, if

previous step shows that there exists a significant relation, then the system matches

the patterns in the context with contexts learned from the training data set. The

classifier and the pattern matching process are both based on unsupervised learning

on the training data set. The process of learning classifier is somehow a reverse

process of using them. It takes in every piece of data in training data set and builds

72



www.manaraa.com

the context for it. It extracts features from the context and uses them to build the

classifier. All these steps are designed under the effect of closed world assumption.

In the first step of constructing context, the approach essentially assumes only the

explicit connections between a pair of nodes are contextual support information.

In the second step, the closed world assumption is also a foundational element for

the definitions of features for classifying pair of instances, because these features

are defined to measure the explicit connections demonstrated in the context. It

means that it does not take into account the possibility of implicit information

that is missing due to incomplete description of the data. Similarly, the last step

determines the type of relationship by matching the existing patterns in the context.

4.2 Context Construction

My approach is based on the context around a piece of data. Because the con-

text is used for retrieving features to build a classifier detecting relational errors

between the subject and the object, the context should include entities that have

certain direct or indirect relationships with the pair of instances in a triple. The

detailed definition of a context is in Definition 4. Taking the example graph in

section 2.1.2 (re-shown here for convenience), the example context for the triple

< A2, hasTopic, SemanticWeb > consists of all the nodes and edges involved in the

set of Paths between A2 and SemanticWeb whose length is less than the limit. This

section discusses how to build the context.

Definition 4. Given an RDF graph G:=(I,L,R,E), a context of size n for a triple

< sub, pred, obj > is a function CG,n : I × R × I → G. It produces a subgraph

S of G such that S := (I ′, E ′, R′), I ′ ⊆ I, R′ ⊆ R,E ′ ⊆ E, and ∀e ⊆ E ′,∃p, p ∈
Paths(sub, obj,G), Length(p) ≤ n, where e ∈ Edges(p).

On the one hand, the context to be constructed should potentially reinforce the

relation between the two instances in a triple to some extent. On the other hand

this context also should be similar to contexts around other entity pairs having

the same relation. Owing to the small world phenomenon [70], almost every pair of

73



www.manaraa.com

hasTopic

h
as
T
o
p
ic

P3

P1 A1

A2

Lehigh

author

has-title

made

af
fi
li
at
io
n

member
Semantic Webinterest

paper2011
John

h
as
-n
am
e

Figure 4.2: Examples of definitions.

entities could be easily connected by a few links. Thus investigating a context just by

counting the links is clearly insufficient. Then the question is transformed to what

the differences are between contexts around a pair that has a significant relation

and a pair that is not related. Two small examples drawn from SWRC dataset

are shown in Fig. 4.3. From the graph on the right hand side, we can see that

the key connections are through a popular node, U.S.. This node is not special for

their relation since this node is also connected via the same relation with many other

nodes, few of which are involved in this subgraph as well. On the contrary, in the left

example, many nodes are distinctive for the pair, such as colleagues and co-authored

papers, because a majority of neighbors of these colleagues and papers are involved

in the context. Specifically, all the neighbors of the node Li-ding are involved in the

actual context for the left hand side, while less than 5% neighbors of it are involved

in the actual context for the right hand side. A similar situation exists for the node

Deborah-mcguiness. Besides that the nodes are involved differently, the predicates

are also used in different ways. Most predicates on the left are used among different

instances. While in the right subgraph, each predicate is used on fewer instances,

e.g. U.S. is the only subject of property based near (property number 9). Therefore

we can see that the same instance and predicate have different significance in the

contexts for different data, which means it is possible to use them to differentiate

the contexts for different data.

74



www.manaraa.com

James-hendler

Medha-atre

Deborah-mcguinness

Li-ding
Poster61

Poster16

PosterProceedings RPI

Jie- bao

Poster82

http://purl.org/dc/elements/1.1/creator

http://swrc.ontoware.org/ontology#author

http://xmlns.com/foaf/0.1/maker

http://xmlns.com/foaf/0.1/member

swrc:ontology#affiliation

swrc:ns/swc/ontology#isPartOf

swrc:ns/swc/ontology#hasPart

http://xmlns.com/foaf/0.1/made

http://xmlns.com/foaf/0.1/based_near 

James-hendler Duo- zhang

Li-ding

Deborah-mcguinness

RPI
TsinghuaU.S.U.S.

Figure 4.3: Part of two context subgraphs from SWRC dataset, the left hand side is
around James Hendler and RPI and the right hand side is around James Hendler and
Tsinghua University. The namespace of swrc is <http://data.semanticweb.org/>.

Since the context is a connection subgraph which should contain sufficient infor-

mation for evaluation, the best way to build such a context is to extract all paths

connecting the pair. Thus greedy algorithms [33, 80] that only pick several connec-

tions are not suitable here. To avoid an infinite number of paths, cycles are not

allowed. Since breadth-first search has exponential space complexity in order to re-

member all visited nodes, I use depth-first search. The parameter of this algorithm

is the max depth limit d, i.e. any path at most consists of d relations among d + 1

different consecutive objects along it. Because there is a depth limit, the algorithm

does not To find more explicit relations, we treat two paths as different if the pred-

icates are different, including the inverse property, even if the nodes on them are all

the same.

To the best of our knowledge, there is no well-known algorithm for constructing

this kind of connection subgraph. Algorithms for finding the shortest paths between

all pairs of vertices are not applicable here, because we want to find all paths, not

just the shortest, between a single pair. Solutions for classic graph reachability are

also not appropriate since they only return a binary answer about the reachability

between two nodes. Since they do not record the nodes and edges that connect

75



www.manaraa.com

them, it is impossible to know how they are connected and the computation for a

pair of nodes can not be reused later for other pair of nodes on the same graph.

Bidirectional search is also an option, but it would need to keep the two sets of

size bd/2 each (b is the branching factor). So in addition to expansion cost, the

extra complexity to get their intersection is bd/2. Thus when d is small, the time

efficiency saved during expansion is traded off by its postprocessing of subgraph

building. Therefore to better deal with scalability, we create a bottom-up dynamic

programming mechanism which maintains a table recording all computed subpaths

leading to the destination. Because only the nodes that can lead to the destination

have entries in the table and only the neighbors of these nodes that can lead to

destination are recorded, the table is very sparse. Also there is no postprocessing

since the table can be viewed as an encoding of the result subgraph.

Algorithm 1 get Context(front, dest,maxd, depth), front is the frontier of the
current path; dest is the destination; maxd is the max length of a path; depth is the
distance from the frontier to the source.

1: dist2dest← maxd− depth
2: if depth < maxd then
3: for each edge < front, prop, child > or < child, prop, front > do
4: if child = dest then
5: DP [front, 1]← DP [front, 1]∪ < dest, prop >
6: else
7: if STATE[child, dist2dest− 1] ̸= DONE then
8: getContext(child, dest,maxd, depth+ 1)
9: for each d, s.t. 0 < d < maxd and DP [child, d] ̸= ∅ do
10: DP [front, d+ 1]← DP [front, d+ 1]∪ < child, prop >
11: for each d, s.t. 0 < d ≤ dist2dest do
12: STATE[front, d]← DONE
13: return DP

The Algorithm 1 is the detail of the bottom up dynamic programming algorithm.

I used two data structures for supporting this algorithm. They are DP table and

STATE table. Both DP and STATE tables are indexed by vertex and distance to

the destination. Each cell of DP table has a list of this node’s neighbors that can

lead to destination with certain distance. Each neighbor in this list is associated

76



www.manaraa.com

with a description of predicate usage on this link. Each cell of STATE table is a

boolean value showing whether this neighbor has been explored on a give number of

step. The algorithm starts from the source as the frontier with depth zero, though

there is no difference which end of the pair is the source. During the search, it treats

the same neighbor connected by different predicates as differing neighbors in order

to get all possible connections. The algorithm iteratively expands each neighbor

of the current node. There are several situations when expanding neighbors. First

(line 4-5), if this neighbor is the destination, it records the current node as being

one step from the destination. Second (line 7-8), if the STATE table shows that

this neighbor with the max distance away from destination is not expanded before

(is not equal to DONE), the algorithm expands it. After this neighbor is expanded

(line 10), record the subpaths from this neighbor as subpaths with one more step

starting from the current frontier. After all neighbors of the current frontier are

expanded (line 11-12), it sets the state of it as DONE. The algorithm traverses all

nodes once and the dynamic table records every subpath connecting an input pair,

so it correctly returns all paths between them. The extracted context subgraph

will be our primary input for later steps, because it carries sufficient entities and

relationships related to the pair of instances being investigated.

Fig. 4.4 shows two internal states when finding all paths from vertex A to E

with maximum path length as three. Both DP and STATE tables are indexed by

vertex and distance to the destination. Each cell of DP table has a list of this node’s

neighbors that can lead to destination with certain distance. Each node in this list

is associated with a predicate and a direction showing how it is connected. For

example, the STATE table on the left shows that all paths from node D within one

step away from the destination are explored. The cell [D, 1] in the DP table means

D connects E in one step (i.e. directly) through the predicate of inverse of property

p. The cell [B, 2] means that B can finally connect to the destination E in two steps

and the immediate step is through node D with predicate r. The DONE in cell

[D, 1] in the STATE table means that all the nodes around D in one step has been

explored. The DONE in cell [B, 2] in the STATE table means all the nodes within

two steps away from node B has been explored. Then when another path through A

77



www.manaraa.com

A

B

D

C

321

<E, p
-
>D

B

A

C

E

<D, r >

321

DONED

B

A

C

DONE

321

<E, p
-
>D

B

A

C <D, r
-
>

<D, r >

321

DONED

B

A

C

DONE

DP table

STATE table

<B, p >
<C, q >

DONE

DONEDONEDONE

DONE DONE

DONE

F

Figure 4.4: Example transition of internal states from when B is finished expanding
to when A is finished expanding.

and C encounters D, the algorithm looks up the table and knows that D has a path

to the destination, then it records the links from C to D and does not expand D

again. Similarly the DP table on the right shows that there are two paths from A via

B and C respectively to the destination with distance three. Going through these

neighbors on the table we can get all paths. Experimental results show that this

algorithm is about 30% more efficient than naive depth-first search on the DBpedia

dataset. The naive depth-first search that I compared is just my algorithm without

using the DP and STATE table. Specifically, the total time of constructing contexts

for 1000 triples in SWRC data set with and without using the data structures are

3.1 minutes and 4.3 minutes.

4.3 Link Prediction

The system is designed to measure the certainty level for every piece of information,

i.e. a triple or more specifically a certain relationship between two resources in the

triple. The measurement of the relationship is based on features extracted from other

contextual information. So this problem is similar to the link prediction problem in

Web Mining, Social Network Analysis (SNA) to a certain extent. So I reviewed the

link prediction problem first.

78



www.manaraa.com

The link prediction problem in SNA can be formalized as follows. Given a

snapshot of a social network, how to infer which new interactions among its members

are likely to occur in the near future? The link prediction problem is also related

to the problem of inferring missing links from an observed network: in a number

of domains, one constructs a network of interactions based on observable data and

then tries to infer additional links that, while not directly visible, are likely to exist.

From the perspective of our problem, these two lines of work are both similar and

helpful for solving our problem. Liben-Nowell et al. [60] and Getoor et al. [37] both

reviewed many link prediction techniques, which are discussed for networks of a

single type of links, e.g. co-authorship network. To the best of my knowledge, there

is no existing well-known works focusing on networks of large amount of types of

links. Thus I mainly review the methods they discussed here. Most of the methods

they compared assign a connection weight score(x, y) to pairs of nodes < x, y >,

based on the input graph Gcollab, and then produce a ranked list in decreasing order

of score(x, y). Thus, they can be viewed as computing a measure of proximity or

”similarity” between nodes x and y, relative to the network topology. Perhaps the

most basic approach is to rank pairs < x, y > by the length of their shortest path

in Gcollab. Such a measure follows the notion that collaboration networks are ”small

worlds,” in which individuals are related through short chains. Other techniques

can be categorized in the following two groups.

The first group of works is the methods based on node neighborhoods.

Common neighbors. The most direct implementation of this idea for link pre-

diction is to define score(x, y) := |Γ(x) ∩ Γ(y)|, where the set Γ(x) consists of the

neighbors of the node x in Gcollab. So this metric is to measure the number of neigh-

bors that x and y have in common. Newman [74] has computed this quantity in

the context of collaboration networks, verifying a correlation between the number

of common neighbors of x and y at time t, and the probability that they will col-

laborate in the future.

Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient - a commonly

used similarity metric in information retrieval [84] measures the probability that

both x and y have a feature f , for a randomly selected feature f that either x or y

79



www.manaraa.com

has. If we take ”features” here to be neighbors in Gcollab, this leads to the measure

score(x, y) := |Γ(x) ∩ Γ(y)|/|Γ(x) ∪ Γ(y)|. Adamic and Adar [2] consider a related

measure, in the context of deciding when two personal home pages are strongly

”related.” To do this, they compute features of the pages, and define the similarity

between two pages to be
∑

z:features shared by x,y
1

log(frequency(z))
.

Preferential attachment. Preferential attachment has received considerable at-

tention as a model of the growth of networks [71]. The basic premise is that the

probability that a new edge involves node x is proportional to Γ(x), the current

number of neighbors of x. Newman [74] and Barabasi et al. [12] have further pro-

posed, on the basis of empirical evidence, that the probability of co-authorship of

x and y is correlated with the product of the number of collaborators of x and y.

This corresponds to the measure score(x, y) := |Γ(x)| · |Γ(y)|.
The other group of works is the methods based on the ensemble of all paths.

Katz. Katz defines a measure that directly sums over this collection of paths, ex-

ponentially damped by length to count short paths more heavily. This leads to the

measure score(x, y) :=
∑∞

l=1 β
l · |paths<l>

x,y | where paths<l>
x,y is the set of all length-l

paths from x to y. (A very small β yields predictions much like common neighbors,

since paths of length three or more contribute very little to the summation.) One

can verify that the matrix of scores is given by (I − βM)−1 − I, where M is the

adjacency matrix of the graph and I is the identity matrix. There are two variants

of this Katz measure: (1) unweighted, in which paths<l>
x,y = 1 if x and y have collab-

orated and 0 otherwise, and (2) weighted, in which paths<l>
x,y is the number of times

that x and y have collaborated.

Hitting time, PageRank, and variants. A random walk on Gcollab starts at a

node x, and iteratively moves to a neighbor of x chosen uniformly at random. The

hitting time Hx,y from x to y is the expected number of steps required for a random

walk starting at x to reach y. Since the hitting time is not in general symmetric,

it is also natural to consider the commute time Cx,y := Hx,y +Hy,x. Both of these

measures serve as natural proximity measures, and hence (negated) can be used as

score(x, y).

SimRank. SimRank is a fixed point of the following recursive definition: two

80



www.manaraa.com

nodes are similar to the extent that they are joined to similar neighbors. Numer-

ically, this is specified by defining similarity(x, x) := 1 and similarity(x, y) :=

γ ·
∑

a∈Γx

∑
b∈Γy similarity(a,b)

|Γ(x)|·|Γ(y)|

Some SNA researchers begin to explore the help of Semantic Web technologies,

such as using ontologies, e.g. Caragea et al. [22], but they use the ontology as

a dictionary to help determine the distance between concepts mentioned in users’

interests and still only predict the single friendship. The link discovery in multi-

relational data by Lin et al. [61] tried to find novel interesting paths between entities,

which is rarely, interestingly linked entities in multi-relational data sets, rather than

a normal link prediction. Tag prediction is a new research topic. From the graph

point of view, if we take the tags placed by people on documents as the labels of

the links between the people and the documents, this graph is more similar to our

RDF graph than other social network. The different tags on the same document

labeled by different people certainly have similarities, because they are all based on

the content of that document. Therefore, a lot of language model based methods

are explored to predict the tags.

4.4 Credible Relation

Most approaches in the domain of link predication on SNA cannot be directly

adapted to the problem of evaluating relationships between nodes on RDF graphs,

although many thoughts there are very helpful and inspiring. The entity types in the

domains of link prediction on SNA are more limited, such as web pages or persons

and the link types too, such as hyper links or friendships. However the Semantic

Web consists of much more heterogeneous instances and semantic links. Therefore

it needs more elegant and complex solutions to take into account special charac-

teristics that only the Semantic Web has. As introduced in section 4.3, the most

popular methods in the domain of SNA are the following [60]. First, rank pairs

< x, y > by the length of their shortest path. Second, rank pairs < x, y > by the

number of neighbors that x and y have in common. Third, Jaccard’s coefficient, a

81



www.manaraa.com

commonly used similarity metric in information retrieval, measures the probability

that both x and y have a feature f , for a randomly selected feature f that either

x or y has. Fourth, Adamic/Adar computes features of the pages and defines the

similarity between two pages to be
∑

z:features shared by x,y
1

log (frequency(z))
.

It can be observed that these popular methods used in Web Mining and SNA

mainly consider two aspects: the characteristics of link graph structure and charac-

teristic of the node itself. The reason for the first aspect is that there are just few

(if not only one) link types on those networks. Compared to it, the Semantic Web

consists of much more types of relationships connecting entities on the network and

so the combination of these relationships can give more variations of semantics. For

the second aspect mainly considered by link prediction in SNA, the instances on

these networks are relatively more independent, a web page may have no hyperlinks

both pointing to and pointed by other pages and a person can have no friends on

a friendship network. Because they have much information that is associated with

itself, e.g. the profile or browsing history of a user or the text content on the web-

page, many useful features can still be retrieved within the node itself. However the

instances on the Semantic Web are denoted by URIs which do not contain much

useful information on their own and all the descriptions of them are conveyed by the

links with other instances or values in the network. To be complete and meaningful,

the knowledge of every node is more dependent on connections with other instances

through edges in the network. In other words, nodes are meaningless if no links

connect them on the Semantic Web. To conclude from these two comparisons, the

viable features on the Semantic Web might need to combine the graph structure

and the link types over them.

Following the above conclusion through comparing and contrasting link analysis

tasks on two networks, I propose to take into account the following three features

on the link analysis on the Semantic Web. First, the link structures in the subgraph

that is around the pair of nodes to be evaluated is still important. But different from

the SNA domain which often only investigates very small neighborhoods, the link

structures should contain enough attributes describing these neighboring instances

and therefore need several more hops than just one or two. Second, in the subgraph

82



www.manaraa.com

that is around the pair to be evaluated, the characteristics and differences among

predicates should be explored, because predicates are one of the most important

semantic features. Third, axiomatic inference is the essential capability of the Se-

mantic Web knowledge. But much real world knowledge can not be represented

using logic axiom of crisp, monotonic predicates, e.g. smoke(x) → cancer(x). A

lot of rules that are even more vague than the example axiom exist potentially in

the real world data, e.g. a graduate student often works in the project that his/her

advisor is the project investigator. Exploring these underlying rules can greatly im-

prove the probabilistic inference on the data that is needed in our problem. Fourth,

the concepts used in describing the information in the context should be explored.

Specifically, if the concepts are more specific, the information would be more accu-

rate. The concepts include both class types and property types.

I designed several metrics to measure the differences among extracted subgraphs.

Having the context for a triple, the following demonstrates the indicators of a sig-

nificant relation (I call this component SR) between the pair of instances in a triple.

Because numeric features would be the most simple to use in a classifier and the rules

using them would also be easy to present, I tried to transform them into numeric

spaces.

Class Distinctiveness The indicator Class Distinctiveness (CD) is used to

measure the information content of each node. In information theory, the amount

of information contained in an event is measured by the negative logarithm of the

probability of occurrence of the event. The amount of information gained or un-

certainty removed by knowing that a probabilistic variable χ has the outcome xi is

given by I(χ = xi) = −logPr(xi). For any class c ∈ C where C is the set of all

classes, the probability that χ = c is given by Pr(χ = c) = |c|/|I|, where I is the set

of all instances. Then we define the CD as the average of the information content of

all the URIs in the subgraph (shown in Definition 5), where c(i) is the class type of

instance i. If an instance o has multiple types, e.g. c1 and c2, then |c(o)| = |c1 ∪ c2|.
Using RDF terms, CD is a measure of the specificity of classes that instances in this

subgraph are type of. The intuition is the contexts with more specific concepts are

more precise.

83



www.manaraa.com

Definition 5. Given a subgraph S = (I ′, L′, E ′, R′) of graph G = (I, L,E,R), the

CD of S is defined as

CD(S) = − 1

|I ′|
∑
i∈I′

logPr(χ = c(i)) = − 1

|I ′|
∑
i∈I′

log
|c(i)|
|I|

(4.1)

Node Distinctiveness The indicator Node Distinctiveness (ND) is used to

measure how the nodes in the subgraph are special to this subgraph. A node is

special to a subgraph if it is connected more strongly to nodes in this subgraph than

to those outside of the subgraph. Each node’s weight is weighted by its usages in

subgraph. A node could be the subject or the object for a connection and be special

when it is special on either one. So for each instance, we separately compute and

average them to reflect the distinctiveness (shown in Definition 6, 7 and 8).

Definition 6. Given a graph G = (I, L,E,R) and an instance U ∈ I, in-degree

of U w.r.t G is defined as InG(U) = |{e|e = (s, p, U) and e ∈ E}| , and similarly

out-degree of U w.r.t G is defined as OutG(U) = |{e|e = (U, p, o) and e ∈ E}|.

Definition 7. Given a subgraph S = (I ′, L′, E ′, R′) of graph G = (I, L,E,R) and

an instance U ∈ I ′, the Node Weight (NW) of U w.r.t S is defined as

NW (U, S) =
1

2
(
InS(U)

InG(U)
× InS(U)

|E ′|
+

OutS(U)

OutG(U)
× OutS(U)

|E ′|
) (4.2)

Definition 8. Given a subgraph S = (I ′, L′, E ′, R′) of graph G = (I, L,E,R), the

ND of S is defined as

ND(S) =
∑
i∈I′

NW (i, S) (4.3)

Predicate Distinctiveness The indicator Predicate Distinctiveness (PD) is to

measure how special the predicates are with respect to this subgraph (shown in 9,

10 and 11).

Definition 9. Given a graph G = (I, L,E,R) and a predicate P ∈ R, the number

of edges of P is EdgesG(P ) = |{e|e = (s, P, o) and e ∈ E}|; the number of distinct

subjects of P is SubG(P ) = |{s|e = (s, P, o) and e ∈ E}|; the number of distinct

objects of P is ObjG(P ) = |{o|e = (s, P, o) and e ∈ E}|.

84



www.manaraa.com

Definition 10. Given a subgraph S = (I ′, L′, E ′, R′) and a predicate P ∈ R′, the

Predicate Weight (PW) of P w.r.t S is defined as

PW (P, S) =
EdgesS(P )

EdgesG(P )
× SubS(P ) +ObjS(P )

SubG(P ) +ObjG(P )
(4.4)

Definition 11. Given a subgraph S = (I ′, L′, E ′, R′), ri ∈ R′, 0 < i, the PD of S is

defined as

PD(S) = |R′|
∑
ri∈R′

(PW (ri, S)× EdgesS(ri))∑
iEdgesS(ri)

(4.5)

There are several considerations for designing the PD. First, for each predicate,

what percentage of its usages is within the subgraph? Second, how many distinct

subjects and objects of each predicate are used in the subgraph? Third, the variety

of subjects and objects should be considered together. Because some predicates have

very few distinct subjects or objects but many more of the other (e.g. citizenship,

the variety of its subject values would make it distinctive if not considering that its

object values may be only several). Fourth, the sum of all the predicates are weighted

based on each predicate’s contribution to number of the edges in the subgraph. Fifth,

using the number of distinct predicates as a factor (the leading coefficient |R′| in
the formula of PD) can compensate some extreme cases where small context graph

with few types of relations makes the CD and ND be very high.

As described before, all the above three measures will be used to differentiate

data into different qualities. It is achieved by using a classifier. The problem that a

classifier solves can be stated as follows: given training data {(x1, y1), . . . , (xn, yn)}
produce a rule (or ”classifier”) h, such that h(x) can be evaluated for any possible

value of x (not just those included in the training data) and such that the group

attributed to any new observation, specifically ŷ = h(x), is as close as possible to

the true group label y. Therefore I will use these measures to build a function h.

There are multiple detailed solution of h and they depend on the mechanisms of

building the classifier. I will compare and test several of them in subsequent section

for experiments.

85



www.manaraa.com

4.5 Patterns of Relation

The component SR determines if there is a significant relation between a pair of

nodes on the RDF graph, if the answer is yes, then a second component checks if

the type of relationship that is entailed through probabilistic classification using the

context agrees with the predicate actually used in the triple. Since the component

is to determine the relation type, it is called RT.

Because the entailment is on a per predicate basis and the number of predicates

in a data set is much smaller than that of instances or triples, using predicates in

the context as features to predict the relation would be an efficient way. In addi-

tion, predicate co-occurrence has been frequently used in ontology alignment and

coreference resolution. When aligning ontology classes, two classes that have more

common characteristics are more likely be equivalent. The common characteristics

include the possible properties that a class can have. When resolving coreferenced

instances, two instances that have more common property values are more likely be

the same. My algorithm also essentially utilizes this similar idea used in ontology

alignment and coreference resolution. The idea is that if a context shows patterns of

predicate usage that also appeared in contexts around other pairs, then the relations

between those pairs are probably similar to this relation.

The input of the algorithm is the context introduced in section 4.2. The patterns

for a predicate consist of predicates extracted from contexts for triples with this

predicate, but they should not be treated simply as a bag of predicates. The first

reason is that the same set of predicates would reflect different meaning if the order

of their usages is different. Second, different join conditions among triples convey

different interconnecting semantic patterns and relations between two end points.

For instance, we have four triples: < A1, studentOf,B1 >, < B1, advisorOf, C1 >,

< A2, studentOf,B2 > and < C2, advisorOf,B2 >. The sequence of the first two

predicates is the same as that of the last two predicates. But A1 and C1 are

connected because they are both students of B1 while A2 and C2 are connected

because A2 is academic descendant of C2. The two relations are totally different.

Considering the points above, we define predicate patterns below. I use traditional

86



www.manaraa.com

DL inverse property representation to indicate that the triple of this predicate is

joined via object with previous triple and via subject with next triple.

Definition 12. Given a graph G = (I, L,E,R), a Semantic Connection is c =

⟨r1, r2, ..., rn⟩, where ri ∈ (R∩R−), and ∃I0, I1, ..., In, such that ⟨I0, r1, I1, r2, I2,
. . . , rn, In⟩ is a Path between I0 and In. Head(c) = r1. Tail(c) = rn.The function

Inst(c,G) returns the set of all such Paths in graph G. Length(c) is defined as the

number of relations in the tuple.

Definition 13. Given a graph G = (I, L,E,R), the Inverted Predicate Frequency

for a given semantic connection c is defined as

IPF (c, R) =
|R|

|{r ∈ R|∃ < s, r, o >∈ E, s.t. Inst(c) ∩ Paths(s, o,G) ̸= ∅}|

Definition 14. Given a graph G = (I, L,E,R), the Semantic Connection Frequency

for a given semantic connection c in contexts for triples of given predicate is defined

as

SCP (c, r) =
∑

<s,r,o>∈E

|Inst(c,G) ∩ Paths(s, o,G)|

Definition 15. Given a graph G = (I, L,E,R), the pattern template for a given

predicate pr is defined as Patt(pr) = {(ci, wi)|ci is a Semantic Connection, wi =

SCP (ci, pr)× IPF (ci, R)}.

Shown in Definition 15, the weight for a Semantic Connection is based upon the

number of instantiations of the Semantic Connection in the contexts for all triples.

If we make an analogy between a predicate and a document class, the Semantic

Connections and the terms respectively, the weight for a Semantic Connection is

similar to a tf/idf term weight used in information retrieval. In tf/idf, a term is

weighted as the number of its usages in a document divided by the inverted frequency

of documents that contain the term. So the tf-idf value increases proportionally to

the number of times a word appears in the document, but is offset by the frequency

of the word in the corpus, which helps to control for the fact that some words are

generally more common than others. Similarly, a Semantic Connection is weighted

87



www.manaraa.com

in proportion of the number of its instantiations in the contexts for triples of the

predicate. Meanwhile it is offset by the inverted frequency of predicates that have

this pattern. A predicate has a semantic connection, if and only if the contexts for

some triples of this predicate contains the instantiations of the semantic connection.

pred(t) = max
pr∈R

∑
<pi,wi>∈Patt(pr)

wi ×match(t, pi) (4.6)

match(< s, r, o >, pi) =

{
0, Inst(pi, G) ∩ Paths(s, o,G) = ∅
1, Inst(pi, G) ∩ Paths(s, o,G) ̸= ∅

(4.7)

The previous definitions introduced how the system extract patterns and their

weights during learning process. At runtime, the system extracts the Semantic

Connections in the context of a triple to be evaluated. Then it matches the ex-

tracted semantic connections with the learned semantic connections. Equation 4.6

describes the criterion for the best matched predicate for a triple t. The best pred-

icate has the largest sum of matched connection weights. In equation 4.7, match()

is a boolean predicate: whether the triple’s context has this pattern and wi. The

matching complexity is Θ(mn), where m is the number of connections from the

context of the triple to be evaluated and n is the total number of connections in

referenced data set.

4.6 Experimental Setup

In our experiments, we selected the SWRC data set which has 100K triples and

67K resources and the DBpedia infobox data set which has 10M triples and 3M

resources. They are widely used and from different domains. The SWRC data

set generically models key entities relevant for typical research communities and

the relations between them. DBpedia is a data set containing structured content

extracted from the information created as part of the Wikipedia project.

Because the referenced data is assumed generally correct, when training, the

system uses some existing triples for each predicate from the referenced data set as

88



www.manaraa.com

positive examples and any triples neither in nor entailed by the original data set can

be used as negative examples. When testing, for each predicate, I pick 200 random

triples which are not in training set as positive test examples. Because almost no

data sets have the negation of triples (recently OWL 2 1 added this function), the

negative triples used in test are generated through the following process. For each

predicate used in positive examples, we create a domain set consisting of all the

distinct subjects of positive example triples using this predicate and similarly a

range set consisting of all objects from them. Then a subject and an object from

each set are randomly selected to compose a synthetic triple of this predicate. This

step can ensure that the synthetic triple still conforms to the ontologies of this data

set. Otherwise it would be trivial to find that it is suspect. Finally if the generated

triple is not entailed by the original data set, it qualifies as a negative example.

I believe SWRC and DBpedia to be highly reliable and complete data. To verify

the reliability of test set, four Semantic Web experts verified 100 randomly sampled

triples from SWRC data set and 100 randomly generated negative examples. They

verify the data by using a simple interface through which they can explore relevant

triples in the knowledge base and Sindice2, a popular Semantic Web search engine.

The experts verified that all the positives are correct and all the negatives are

incorrect.

The training process is to establish the parameters of the classifiers in the two

components. The process to get the pattern weights used to entail the predicate

is introduced in section 4.5. To get the weights of indicators for the existence of a

significant relation, I compute the three indicator values (CD, ND, PD) for every

training triple and put them into a classifier as feature values of these triples. To

avoid bias, I removed the original direct links between the pair of objects in positive

triples for all experiments so that both positive and negative triples are unknown

to the system.

The experiments are primarily designed to check if the system can make distinc-

tions between ordinary triples and abnormal triples in the test set. Component SR

1http://www.w3.org/TR/owl2-overview/
2http://www.sindice.com

89



www.manaraa.com

decision tree naive Bayesian KNN (k=5) KNN (k=10) BLR
Precision 90.2% 88.6% 90.5% 90.2% 89.4%
Recall 72.8% 72.9% 71.6% 71.7% 72.9%

F-measure 80.6% 80.0% 79.9% 79.9% 80.3%

Table 4.1: Comparison among different types of classifiers.

and RT are separated to test if each functions well.

4.7 Results

First of all, I did the experiment to determine which kind of classifier is best suitable

to the SR component. I selected 1000 random triples from SWRC data set and 1000

random generated negative triples for training. Similarly I selected 200 random

triples from SWRC data set and 200 random generated negative triples for testing.

I compared the performance of several popular classifiers, such as decision tree, naive

Bayesian, kth nearest neighbor and binomial logistic regression (BLR). Overall, the

decision tree has the best F-measure, though others are not far behind. I believe that

the reasons why the recall is relatively lower than precision are as follows. These

features captured the common characteristics of positive examples, so true negatives

are hard to show these characteristics. Therefore, the precision is high. However,

due to the nature of real world data, some true positives might not strongly show

these characteristics, thus they are easier to be classified as negatives. Therefore,

the recall is relatively lower than the precision. I believe it is important and good

that the system does not classify many negatives as positives. As a result, the

system does not lose the opportunity to detect true negatives in later steps. In all

the following experiments, I use decision tree as the classifier for the SR component.

Before the experiments on system accuracy, I checked the running time of system.

Because the dominant part of execution time is for the context construction. Table

4.5 shows the total construction time for 1000 triples in SWRC when context size

varies.

90



www.manaraa.com

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

2 3 4 5 6Context Size

T
im
e 
(m
in
u
te
s)

SWRC

DBpedia

Figure 4.5: The effect of context size on context construction time.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6Context Size

DBPRecall

DBPFmeasure

DBPPrecision

Figure 4.6: (a)(b) Results of the component SR on determining significant relations
on SWRC.

The first group of experiments show the effect of context size (defined in Defini-

tion 4) on determining the existence of significant relations. Both test sets consist

of an equal number of positive and negative examples. The results reflect a similar

trend on both data sets (Fig. 4.6 and Fig. 4.7). The precision does not drop much

when the context size decreases. The reason is that when the subgraph is smaller

(resulting in less context information), the links in the contexts of both positive

and negative samples are easily broken in negative contexts. So it would be harder

for the negatives to have a well clustered supporting evidence that is necessary to

be classified as positive. Thus the false positives become fewer when the context

shrinks. Similarly due to the removed links in the contexts for positive examples,

91



www.manaraa.com

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6Context Size

SWRCRecall

SWRCFmeasure

SWRCPrecision

Figure 4.7: (a)(b) Results of the component SR on determining significant relations
on DBpedia.

some of the positive examples will lose some clues that are useful for the system to

classify them as positive when the context shrinks. So the number of false negatives

increases and the recall drops more than precision. In addition, we notice that the

improvement on recall on the SWRC data set is more than that on the DBpedia data

set when context size increases. I believe the reason is that SWRC data set has more

relational descriptions among instances, specifically the average density (number of

edges divided by square of number of nodes) of context graphs on SWRC data set

is around five times of that on DBpedia data set. So the contexts in SWRC gains

more descriptions when the path length is larger. Another observation that can

be an important reason is that SWRC data set have more redundant descriptions,

i.e. property usages, for many instances on the domain. It can be noted that when

the context size is greater than five, both the precision and the recall gains little.

Then I compared the number of nodes and edges in the contexts of size five and six

and observed that they both do not increase much. Specifically, the increase on the

number of nodes from five to six is less than 10% and the number of edges from five

to six is less than 8% on two data sets. However the increase of computation time is

more than 24%. So the performance didn’t gain much due to similar contexts while

efficiency is lost much when using big context size. Therefore in later experiments,

I set the context size five in default.

To check how the system relies on the two assumptions on the reference data,

92



www.manaraa.com

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1% 5% 10% 20% 50%
Percent of triples removed

F
-m

ea
su
re

SWRC
DBPedia
BaselineSWRC
BaselineDBP

 

Figure 4.8: Impact of less complete data on the systems ability to detect significant
relations.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1% 5% 9% 17% 33%
Percent of erroneous triples in data set

F
-m
ea
su
re

SWRC
DBPedia
BaselineSWRC
BaselineDBP

 

 Figure 4.9: Impact of erroneous data on the systems ability to detect significant
relations.

i.e. the closed world assumption and the referenced data set is generally correct,

the second group of experiments checks the system performance when some random

triples in the reference data are removed (Fig. 4.8) and when the reference data has

some erroneous triples (Fig. 4.9). In Fig. 4.8 I removed 1%, 5%, 10%, 20% and 50%

of data, respectively. In Fig. 4.9 I added erroneous triples with the same amount as

the removed triples in previous experiment, which generates a data set with 1%, 5%,

9%, 17% and 33% erroneous data, respectively. Removing triples gives two aspects

of impact to the system. One is that less context information will be provided

93



www.manaraa.com

for all triples and the other is that some missing triples that the system assumes

incorrect are factual. We see that when 10% triples are removed, the system still

can give decent performance (drops within 5% and it occurs on DBpedia). Similarly

when 10% of triples are incorrect, the performance only drops within 4% (it occurs

on DBpedia). Comparing Fig. 4.8 and 4.9, the effect of erroneous triples is not

as much as that of the triples removed. The reason is that the learning is based

on the agreement among the majority of the data. Some erroneous triples would

probably incur some patterns that others hardly agree with, while removing triples

makes many agreed patterns disappear or become blurred. Since our component

SR for determining significant relation is similar to the link prediction in SNA, we

also compared with the following baseline classifier. Among popular link predictors

in SNA, such as Jaccard, Katz weighted, Katz unweighted, common neighbors and

preferential attachment [60], we observed that the baseline using Katz weighted

and preferential attachment is almost as good as combining all above popular link

predictors and so the baseline in Fig. 4.8 and 4.9 uses these two predictors in the

same classifier. From the figures, we can see that my system using the proposed

measures is much better than the baseline using popular link predictors.

The third group of experiments is to check the component SR with different

subsets of indicators (shown in Fig. 4.10). We see that only using the ND can get

better performance than the other two on SWRC, while only using the PD or CD is

better in DBpedia. Combinations of two indicators are better than using single ones

and but no combination is dominant across all domains. Finally the combination

of the three is the best. It proves that three indicators capture different significant

aspects of a context.

In the last group of experiments (Fig. 4.11), we tested the component RT to

check if the Semantic Connections are useful to determine the relation type be-

tween the pair of objects in a triple. If the system can accurately determine the

best predicate for their relation, the system can also differentiate the triple using

the correct predicate from that using an incorrect predicate. In this experiment,

the positive results from the SR are then used to evaluate the correctness of the

predicate. Thus we should note that the performance of this component is affected

94



www.manaraa.com

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD ND PD ND+PD ND+CD PD+CD ND+PD+CD

F
-
m
e
a
s
u
r
e

F
-
m
e
a
s
u
r
e

F
-
m
e
a
s
u
r
e

F
-
m
e
a
s
u
r
e

SWRC

DBPedia

 

Figure 4.10: Results of the component SR using subsets of indicators on two data
sets.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3 4 5 6Context Size

F
-m
e
a
s
u
r
e

100 200 300 400Baseline k =

DBPedia

SWRC

baselineDBPedia

baselineSWRC

 

 

Figure 4.11: Comparison between component RT and the baseline on determining
relation types on two data sets.

by that of SR. In order to understand our system’s capabilities, we compare it to a

baseline system based on predicate suggestion systems. For instance, such systems

usually find similar instances and suggest some predicates used on those instances

but not on this instance [75]. If both instances in a triple have a group of similar

instances respectively, the predicates connecting the two groups of instances could

also be the predicates between them. So the baseline system is built by finding a set

consisting of the top kth similar instances for each object and then picking the top

ranked predicate connecting these two sets of instances as the predicted relation.

95



www.manaraa.com

The similarity between instances is measured by counting the number of the same

predicate and object pairs. In this experiment, I am not implying the values of k=

100, 200 and 300 are comparable to context sizes of 3, 4 and 5. I am showing the

trend of each system and comparing the best performance of each of them when

variable of each changes. The figure shows that although RT performs worse than

the baseline for context sizes of three and four, when the context size is bigger than

five, it performs better than the best configuration of the baseline.

In summary, the major observations from these experiments are as follows. The

two-step system indeed captures some characteristics underlying the context of every

piece of data that can help to differentiate their normality. With bigger context sizes,

the overall accuracy improves. But when the context size is too large (bigger than

five), there are diminishing returns in accuracy while the execution time increases

rapidly. When using the referenced data as training, the density of the data has more

impact than general correctness, because comparing two situations, the performance

drops more when I removed a significant portion of data from it. This removal

operation essentially breaks the approximate closed world assumption which is the

essential foundation of the algorithm used in this system.

96



www.manaraa.com

Chapter 5

Data Correctness under the Open

World Assumption

In my previous work for the scenario where the closed world assumption is applied

to Semantic Web data, I learned that there are indeed some potential common

characteristics underlying the data that can help to detect quality issues. However,

the closed world assumption does not usually apply to the Semantic Web. Further

through results, I observed that there is a significant performance drop when this

assumption does not hold, i.e. when I removed a significant portion of data from

the training data set, thus an approximate closed world assumption is invalid. Then

in this chapter, I address the research question whether there is a way to discover

similar useful patterns in a Semantic Web data set where the open world assumption

applies. The open world assumption is the assumption that the truth-value of a

statement is independent of whether or not it is known to be true. The essential

idea in the previous chapter can inspire the approach in this chapter. I still try

to utilize patterns to measure (dis)similarity between the data in order to detect

abnormal Semantic Web data [104]. I no longer require either the data in question

or the training data to be close to the state of the closed world assumption, i.e. for

some objects in the domain, the values for some properties that are applicable to

these objects might not be given.

97



www.manaraa.com

In my previous work, I designed a two-step system for detecting abnormal Se-

mantic Web data. There are drawbacks that can be improved. First, although

the decomposition of system into two components: link existence checking and link

type checking, is natural, if we deem no relation as a special type of relation, we

can integrate them into one by only checking the type of relation. That will lead

to both more efficient computation and a more concise system architecture. How-

ever it requires to improve the functions of the relationship type classifier in my

previous work and so it is necessary to improve the patterns both in extraction and

computation used for determining the relation type. Focusing on those patterns,

the second drawback of previous algorithm is as follows. When I was investigating

the semantic connections between two instances, I did not take into account the

differences among predicates, in short the semantics. In other words, if there are

the same number of instantiations for two semantic connections, these two semantic

connections should also differently affect the determination of a relation type if any

predicates on two semantic connections are different, because their semantics are

different. To this end, it essentially requires to compute the discriminative weights

of predicates in order to affect the weights of semantic connections.

There will be two important changes when the closed world assumption is not

valid. First, I can not assume the triples not present in the training data set as

false, thus I cannot use them as negative samples for training. Therefore I need to

adjust the learning model to deal with this situation. Second, when some of the

data to be evaluated is not comprehensively described, i.e. there could be very few

semantic connections between the two objects in a triple, I need an approach to

find more supporting evidence for the pair: essentially an expansion of its context.

Corresponding to these two changes, I designed a context representation model and

learning model that takes into account requirements corresponding to each changes.

The work flow of this system is shown in Fig. 5.1. The context constructed in the

step before the expansion essentially is the same as the context constructed in my

previous system. However the representation is no longer in a subgraph form but

a vector space model consisting of semantic connections. This new representation

will make the computation of pattern weights and later pattern matching more

98



www.manaraa.com

Context Construction

Context Expansion

Relation Classifier

Semantic Web data

Abnormal 

Semantic Web data

Context Construction

Context Expansion

Semantic Web training data

Sampling for Learning

Learning to Build 

Classifier

Inconsistent 

Relation Type

System Runing System Training

Figure 5.1: The work flow of the system under open world assumption.

convenient. Using the representation model and after the expansion, the contexts

are used in the unsupervised learning through a learning model that is adapted from

tag prediction problem to this problem.

Like the algorithm in Chapter 4, this work also utilizes the idea of classification

to differentiate data into normal or abnormal state. From the classification perspec-

tive, they have the following differences. The classifier used in the SR component of

my previous work in Chapter 4 is a classifier that determines existence of credible

relation between two instances. I used a decision tree as the classifying algorithm

and use three numeric distinctiveness metrics as features. The classifier used in

the RT component of my previous work in Chapter 4 is built by input both the

features, i.e. patterns, and the algorithm to classify using these patterns, i.e. the

99



www.manaraa.com

scoring function of pattern matching. The classifier in this chapter is adapted from

its original usage in tag prediction domain. It is more customized for this problem

than naive Bayesian, decision tree and some other general ones. Further both the

patterns and the classifying algorithm are different from the one used in the my

previous work in Chapter 4. Specifically, the patterns in this work will be extracted

from extended context of a triple as opposed to immediate context and their repre-

sentations are significantly different from those in my previous work. Finally, given

the new patterns, the classifying algorithm in this work will consider the open world

assumption. The overall system architecture is shown as Fig. 5.1.

5.1 Context Representation Model

Considering the above analysis of problem requirement and thoughts on algorithm

design, I begin with the core part of the classifier to be built, i.e. the scoring

function, and follow with details of how to compute it and how to get the required

information. Formally, my problem is defined as: given the pair u of subject s

and object o, how significant is some relation p between the pair u (written yu,p).

This is the scoring function that determines which relations appear to be normal

for the pair of instances and which are not. Let Up be the set of all pairs that have

the relation p and u′ be any pair of subject s′ and object o′ (s′! = s or o′! = o)

having the relationship p. Since I still use the essential idea of comparing common

characteristics between the contexts for similar pairs of instances, the yu,p can be

measured by the overall similarity between the pair u and all the pairs u′ (equation

5.1), where Up and sim() is the similarity function comparing the contexts for two

triples which will be introduced in Section 5.1.3.

yu,p =
1

|Up|
∑

u′∈Up,u′!=u

sim(u′, u) (5.1)

100



www.manaraa.com

5.1.1 Representing Context for Two Instances

Using the definition of Semantic Connection (Definition 12 on page 87), the context

for a pair u is defined over a semantic connection space which is a vector space

consisting of all possible semantic connections in the data set. Without ambiguity,

we also refer the context representation as the representation for the pair itself which

is shown below (equation 5.2), where nu,ci means the number of instantiations of

the semantic connection ci(i ≤ m) between the pair u, where m is the total number

of distinct semantic connections in the data set.

Vu = [nu,c1 , nu,c2 , ..., nu,cm ] (5.2)

As semantic connections are based upon finite acyclic paths (Definition 2), the

semantic connection vector space is also finite. But it would be impractical if no

length limit is set on connections since very long connections may not convey a

clearly meaning for relationship between two connected objects. According to ob-

servations in experiments of my previous work, in both the SWRC and DBpedia

data sets, when the maximum semantic connection length (Definition 12) is five,

most pairs of objects are connected by at least one connection. Also when the

length increases from five to six, there is a diminishing returns in contextual infor-

mation while the execution time increases rapidly. Therefore, I set the maximum

length as five in this work. In the worst case, the vector space is O((2∗ |R|)5), where
R is the set of predicates. But due to disjoint domains and ranges, not all pred-

icates can follow another. For example, SWRC, which has about 100 predicates,

has an actual semantic connection space of about 50, 000, which is much smaller

than the theoretical worst case (200)5. Clearly this context representation is ap-

plicable for computation on real world data, especially considering a sparse vector

implementation can be used here.

5.1.2 Context Expansion

We note that a context with more semantic connections can usually supply more

supporting evidence for the relation between the pair of objects. There are two

101



www.manaraa.com

factors that influence the number of semantic connections. First, the dataset is

fully described over the provided vocabularies and so the instances in it have rich

relational descriptions. Second, the semantic connection length limit can directly

influence the number of connections. But these two conditions are neither general

nor computationally efficient. First, considering that the open world assumption

is applied to most Semantic Web data sets, some property values, i.e. relational

descriptions, for an instance could be missing in the data. Second, recall that we set

the length limit to five in this work, because of diminishing returns with larger max

length. Third, some objects may still have few connections even in contexts with

large length limits, due to the nature of the instances or the properties for them. So

a better solution for expanding the context is needed.

Predicate co-occurence has been shown to correlate with instance similarity [75],

so similar instances could give certain suggestions on predicate usage. Based on

this idea, I proposed the following method to get more supporting evidence for a

predicate usage between two instances. For each instance, I build a set of similar

instances and call this set the expanded set. Because the semantic connections

between two expanded sets are partially similar to the semantic connections between

the original pair u, they can be viewed as partial semantic connections between the

original pair.

The similarity used for building the expanded set is inspired by Semantic Web

instance mapping research. Its general conditions are the same class type and a

high percentage of the same predicate / object pairs. Specifically, the first condition

is that the class type of a similar instance needs to be either the same as or the

subclass of the class type of the original instance. Second, the predicates used

on a similar instance need to be either the same as or the subproperties of the

predicates used on original instance. Third, to find similar instances for the subject

in a triple, I compare the predicate/object pairs; while for the object in a triple, I

compare the predicate/subject pairs. The reason is that I want to determine the

relationship between the original subject and object, so it is better to differentiate

the instance similarity as a subject and as an object in a triple. When comparing

object literal values, I use Jaro-Winkler [51] distance. Specifically, distance dj of two

102



www.manaraa.com

given strings s1 and s2 is defined as dj =
1
3

(
m
|s1| +

m
|s2| +

m−t
m

)
, wherem is the number

of matching characters and t is half the number of transpositions. Two characters

from s1 and s2 respectively, are considered matching only if they are not farther than⌊
max(|s1|,|s2|)

2

⌋
− 1. Each character of s1 is compared with all its matching characters

in s2. The number of matching (but different sequence order) characters divided by

2 defines the number of transpositions. For example. in comparing CRATE with

TRACE, only ‘R’ ‘A’ ‘E’ are the matching characters, i.e, m = 3. Although ‘C’,

‘T’ appear in both strings, they are farther than 1.5, i.e., (5/2)-1=1.5. Therefore,

t=0. In DwAyNE versus DuANE the matching letters are already in the same order

D-A-N-E, so no transpositions are needed. In this work, if Jaro-Winkler distance

between two strings is higher than 0.95, they are treated as the same. Finally to keep

the expansion conservative and also make later computation efficient, the instances

similarity threshold is set 0.8 in this work, i.e. 80% predicate and subject / object

pairs used on the original instance are also used on the instances in the expanded

set. Formally, the expanded set id defined as below.

Definition 16. Given an RDF graph G := (I, L,R,E) and an instance i ∈ I, the

expanded set for this instance i used as subject is defined as

Expand sub(s) = {x|∀p, o1, o2, s.t. < s, p, o1 >∈ E, and < x, p, o2 >∈ E, and (o1 =

o2 or dj(o1, o2) > 0.95, and

|{< s, p, o1 >}|
|{< s, p′, o′ > | < s, p′, o′ >∈ E}|

> 0.8} (5.3)

The above definition states as follows. Given an instance s, it returns a set of

instance {x}. Each instance x is used as subject in set of triples {< x, p, o2 >}
and there are another set of triples {< s, p, o1 >} which has s as subject and the

same predicate. Meanwhile, o1 and o2 are identical or similar. Furthermore the

percentage of such triples < s, p, o1 > are more 80% of all triples {< s, p′, o′ >} in
which s is used as subject. Using these two expanded sets for the pair of instances

in a triple, I take all semantic connections between any pair of instances from these

two sets as expanded context for the original triple.

If taking the two expanded sets as a new pair of instances ū, the context for ū

103



www.manaraa.com

is represented the same as that for original pair u, except that the number of each

connection is normalized by the multiplication of the size of two sets. Then the

context for u is expanded as follows and renormalized by its magnitude.

V̄u = (1− α)[nu,c1 , nu,c2 , ..., nu,cm ] + α[nū,c1 , nū,c2 , ..., nū,cm ]

= [(1− α)nu,c1 + αnū,c1 , (1− α)nu,c2 + αnū,c2 , ..., (1− α)nu,cm + αnū,cm ]

The α is an expansion factor determines the significance level of the effect of the

expansion. After simplifying the formula, we get a vector in the form of equation

5.2 as the general form of the representation for a pair of instances, since the above

expanded form still is just a special form of it.

This context expansion enriches information for the pair of instances and also

does not significantly increase the computation in later steps, specifically the number

of distinct connections between each pair of objects in SWRC is only raised from

700 to 1000 on average after expansion. Given about 100 predicates in SWRC, the

vector space has around 50k distinct semantic connections and each pair of objects

have averagely 1k distinct connections after expansion. Thus the actual vector space

is much smaller than the theoretical complete space which is 2005 and each context

needs far less space.

5.1.3 Semantic Similarity of Contexts

The cosine similarity is commonly used to compare two objects, especially when their

features are represented in a vector space. However this measurement assumes that

any two elements in the vector are independent and there is no similarity between

them, which may not true in this problem domain. The similarity between different

connections should affect the similarity between vectors. Considering similarity

between elements in the vector space, I define the similarity between vectors as the

sum of the similarities between all pairs of connections divided by the multiplication

of the magnitude of two vectors (equation 5.4).

sim(u′, u) =
1

||u||||u′||

m∑
i=1

m∑
j=1

nu,cinu′,cjs(ci, cj) (5.4)

104



www.manaraa.com

Because a semantic connection is a sequence of joined predicates which is formed

under strong restrictions and conditions, I have the following considerations for the

comparison between connections. First, the lengths of two comparable connections

are equal because otherwise it will make it unnecessarily complex to determine which

parts of connections are comparable. Second, to make two connections comparable,

two properties at each corresponding position also need to be comparable, i.e. the

pair of properties are equivalent or possibly similar. Third, partial matching between

shorter connections usually gives a clearer semantics of a relation and should be given

greater weight on final similarity. A multiplication of similarities on each segment

on semantic connections can achieve this effect. Therefore the similarity between

a pair of connections s(ci, cj) is defined as the multiplication of similarity between

every pair of properties at the corresponding positions (shown as follows),

s(ci, cj) = s(< ri1, ri2, ..., rin >,< rj1, rj2, ..., rjn >)

=
n∏

k=1

xik,jk (5.5)

where xik,jk is the similarity between two properties rik and rjk, if they are the same

or equivalent, then it is 1, otherwise it is a real number in the range [0, 1). We will

discuss how to calculate these values in section 5.2. The final form of yu,p is shown

below.

yu,p =
1

|Up|
∑
u′∈Up

1

||u||||u′||

m∑
i=1

m∑
j=1

nu,cinu′,cj

n∏
k=1

xik,jk (5.6)

Based on the research of property mapping on the Semantic Web, I think that two

pre-conditions can indicate that two properties could be similar. First, two proper-

ties on two connections are used on the same direction. If they are used on opposite

directions, we compare between the inverse property of one of them and the other.

Second, two properties have a subsumption relation or have overlapping domains

and ranges. Taking the SWRC data set as example, the vector space is around 50k

and so all pair wise comparisons would be around 1.25 billion. However as men-

tioned above, any two instances in SWRC have roughly 1k semantic connections in

the context and each semantic connection has just around 10 connections on aver-

age need to be compared, since other semantic connections that are theoretically

105



www.manaraa.com

similar also do not appear in the contexts to be compared with. Besides this ad-

vantage, because the pair wise property similarities xik,jk are the model parameters,

the conditions also limited them to not many. The initial value for the similarity

of overlapping properties is the number of common pair of URIs divided by the

number of total pairs; for the subsuming properties, it is the number of triples of

subproperty divided by the number of all triples, including the inferred, of super

property. After the learning model use these as parameters to optimize relationship

classification on training data set, these parameters will be changed.

5.2 Learning Predicate Similarity

The context model for pairs of instances is used for comparing (dis)similarity be-

tween them and it consists of semantic connections which can be viewed as the

hypothesized probabilistic rules. To determine how contexts are similar / different,

these rules need to be associated with different weights to affect the comparison

between two contexts. Furthermore these rules are connected through predicate

usages and thus weights are finally affected by predicate similarities. Therefore the

predicate similarities become the parameters to be learned for the classifier model.

The following subsections will introduce how to learn the model parameters in order

to determine the significance for each rule on discriminating the type of relations

between instances.

5.2.1 Motivation

Maximum likelihood is a classical method for parameter estimation. The likelihood

is the probability of the observed data as a function of the unknown parameters

with respect to the current model, a specific one is element-wise loss on the triples

estimated as follows, where ŷs,o,p is the estimated score for the triple < s, p, o >,

ys,o,p is a binary value depends on its state in the training data and x̂ is the vector

106



www.manaraa.com

of predicate similarities, i.e. parameters.

argmin
ˆ̂x

∑
(s,p,o)∈I×R×I

(ŷs,p,o − ys,p,o)
2 (5.7)

But this estimation has several problems. First it uses the 0/1 interpretation scheme.

In other words, it encodes each positive sample as 1 and interprets the remaining

data as 0. Considering open world, it would be false to think pairs of instances

which are not used as the subject and object or vice versa in any triple have no

appropriate predicate from the ontologies that the data conform to to represent

their relation. Second, it assumes the data set to be dense. If all elements that are

not in it are assumed to be 0, even for a small dataset like SWRC, the 0 values

dominate the 1 by many orders of magnitude. Specifically, if the sparsity is defined

as 1−|E|/(|I|∗|R|∗|I|), the sparsity of SWRC is over 99.9%, given 73k for |E|, 31k for
|I| and 123 for |R|. Third, as the system is trying to give a probabilistic suggestion,

trying to fit to the numerical values of 1 and 0 is an unnecessary constraint. Instead

only the qualitative difference between a positive and negative example is important.

That means it would be good enough if ŷ of a positive example is sufficiently larger

than that of a negative example. Fourth, maximizing likelihood could result in

overfitting and its computation is globally.

5.2.2 Learning Model for Predicate Similarity

Another type of parameter estimation is to calculate the gradient descent iteratively

and locally. The model I used is modified from its application in the tag prediction

problem [99]. First, I give a brief introduction of tag prediction or tag recommen-

dation from a perspective related to relationship classification in this problem.

Tagging, in general, allows users to describe an item (e.g. website, song, friend,

etc.) with a list of words (i.e. tags). Tags can be used e.g. for organizing, browsing

and searching. Tagging is a popular feature of many websites like last.fm, delicious,

facebook, flickr. With tag recommendation a website can simplify the tagging pro-

cess for a user by recommending tags that the user might want to give for an item.

As different users tend to give different tags for the same item, it is important to

107



www.manaraa.com

personalize the recommended tags for an individual user. That means the tag rec-

ommender should infer from the already given tags, which tags a certain user is

likely to give for a specific item. For predicting a personalized list of tags for an

item, the tag recommender should use the tagging behaviour of the past of this and

other users as well as the tags for this and other items. Interesting about tagging

data is that it forms a ternary relation between users, items and tags. This makes

it different from typical recommender systems where the relation is usually binary

between users and items. However it is similar to a ternary relation between sub-

jects, objects and predicates on the Semantic Web. Exploiting all information of the

ternary relation is a key in tag recommendation. A second problem that many tag

recommendation try to solve is the data interpretation as usually only positive feed-

back is present in a tagging system. In my research problem, there is a training data

set that is assumed generally correct without labels. Thus, similarly, the data set

are usually only the positives. However this is on a different problem domain with

different background, scenario and parameters. There are a number of challenges to

adapt the model from tag prediction to relationship classification in Semantic Web

data.

For a pair u of instances, the algorithm ranks predicates by yu,p (equation 5.6),

which is a scoring function for this pair u and a given predicate p and contains

some parameters, i.e. predicate similarities. The objective function (equation 5.8)

maximizes the ranking statistic AUC (area under the ROC-curve). An ROC curve

is a graphical representation of the trade off between the false negative and false

positive rates for every possible cut off. When the AUC is maximum, the system

achieves idea balance between false negative and false positive.

AUC(x̄, u) =
1

|P+
u ||P−

u |
∑

p+∈P+
u

∑
p−∈P−

u

h(yu,p+ − yu,p−) (5.8)

To make the AUC differentiable, I used the s-shaped logistic function h(x) which can

make the learning curve exhibit a progression from small beginnings that accelerates

and approaches a climax over iterations.

h(t) =
1

1 + e−t
(5.9)

108



www.manaraa.com

Then using gradient descent, AUC has to be differentiated with respect to all model

parameters. For each pair u ∈ U , where U is all possible pair of instances in the

data, P+
u is the set of predicates that are already used between the pair u in the

data while P−
u is the set of predicates that are not used between the pair u in the

data. The overall optimization task with respect to the ranking statistic AUC and

the observed data is then:

argmax
x̄

∑
u∈Ps

AUC(x̄, u) (5.10)

With this optimization (1) missing values are taken into account because the max-

imization is only done on the observed pairs U and (2) the model is optimized for

ranking. In all, this criterion takes into account all motivations discussed in section

5.2.1. The model parameters x which is a vector of all possible pairs of predicate

similarity introduced in Section 5.1.3 are updated:

∂
∂x

AUC(x̄, u)

=
∂

∂x

1

|P+
u ||P−

u |
∑

p+∈P+
u

∑
p−∈P−

u

h(yu,p+ − yu,p−)

= z
∑

p+∈P+
u

∑
p−∈P−

u

tp+,p−
∂

∂x
(yu,p+ − yu,p−)

with:

tp+,p− = h(yu,p+ − yu,p−)(1− h(yu,p+ − yu,p−))

z = 1/|P+
u ||P−

u |

and

∂
∂x
(yu,p+ − yu,p−)

= ∂
∂x
( 1
|Up+ |

∑
u′∈Up+

1
||u||||u′||

∑m
i=1

∑m
j=i nu,cinu′,cj

∏n
k=1 xik,jk

− 1
|Up− |

∑
u′∈Up−

1
||u||||u′||

∑m
i=1

∑m
j=i nu,cinu′,cj

∏n
k=1 xik,jk)

= 1
|Up+ |

∑
u′∈Up+

1
||u||||u′||

∑m
i=1

∑m
j=i nu,cinu′,cj

∂
∂x

∏n
k=1 xik,jk

− 1
|Up− |

∑
u′∈Up−

1
||u||||u′||

∑m
i=1

∑m
j=i nu,cinu′,cj

∂
∂x

∏n
k=1 xik,jk

109



www.manaraa.com

I noted that this equation contains a lot of computations that can be reused for each

round, e.g. the derivative of the similarity between two connections are not changed

within each iteration. So I use some memoization techniques to eliminate many

repeated computations and update the memoized table once after each iteration.

Thus for each pair u ∈ Ps, the model parameters x are updated as follows:

x̂← x̂+ τ · ∂AUC

∂x
(5.11)

where τ is the learning rate which I set as 0.05. This equation means after the model

learns from each observed triple to increase the gap between the positives and the

negatives, it updates the model parameters, i.e. predicate similarities, based on the

learning rate.

5.2.3 Dimensionality Reduction for Learning

The purpose of the learning is to find the common characteristics underlying different

triples with the same predicate. Meanwhile these characteristics can maximize the

gap between the triples of this predicate and the triples of other non-equivalent

predicates. Ideally, we should avoid the unnecessary computation that may not

improve or change the model parameters enough to affect the final results above a

certain threshold.

I found that the significant changes of model parameters during the learning

process are incurred by only some of new positive or negative examples. These

examples usually have a vector representation different enough to the previous ones

that are already examined by the learning model. Thus if the next example is

quite similar to any previous one that is already computed, it is expected that the

changes of model parameters usually would not be significant. To save this type

of computation, I proposed to cluster these similar examples and then treat each

cluster as a single training sample. The idea is similar to k-means clustering, which is

NP hard and needs many iterations even in approximate optimal algorithms. Since

the requirement on the learning time is not as critical as running time, to keep this

optimization conservative, the criterion of the clustering is that the cosine similarity

110



www.manaraa.com

between any two samples in the cluster is above a certain threshold γ. The higher

γ is, the more/smaller clusters are. In the clustering process, for triples of each

predicate, the system first computes and ranks the similarity of all pairs of them.

Next the system repeats the following process until the similarity of the pair on top

of the list is below the threshold γ. If both triples in the pair are not clustered,

the system creates a new cluster consisting of these two. If one of them is already

clustered while the other is not, then the other one would be merged into this cluster

as long as its similarity with at least one in the cluster is higher than γ. Or if both

are clustered and the similarity of any pair of triples from these two clusters is above

the threshold γ, these two clusters are merged as a new one. Finally, the system

averages each cluster into a single sample by averaging the vector representations of

triple in this cluster. This process essentially condenses the training set.

5.3 Experiments

In the experiments for this algorithm, the training and test data set are the same

as what I chose for the previous algorithm (Section 4.6), i.e. SWRC and DBpedia.

To improve the connectivity on the RDF graph, I treat some literals as resources

that mainly are object values of some inverse functional datatype properties and

treat them as common URI resources. Inverse functional means that the subjects of

these reused literals are indicating the same real world object. Through this, they

play the roles as equivalent objects on our enhanced RDF graph. The properties

are email, homepage, title, url, isbn. These properties usually can be determined

by the ontology, however they also can be manually input.

After the data set is split into test and training set, the experiment process

generally is as follows and according to testing requirement on each specific aspect of

the system, some of the steps might be modified or removed. First, the system builds

contexts for training samples. Second, the system clusters the training samples

(introduced in section 5.2.3) in order to improve the learning time. Third, the

system learns model parameters (predicate similarities) on training samples, given

111



www.manaraa.com

their initial values. Fourth, I input testing triples (1000 positives and 1000 negatives)

with the condition that the predicates of these testing triples are unknown to the

system, both the positives and the negatives. Thus system gives a top ranked

predicate by according to the scoring function 5.6 which uses the learned parameters.

Finally I check the resulting predicate that is determined by the relational classifier

with highest score. For positive samples, the system is expected to entail the correct

predicate, which means the system can detect the abnormality if the predicate is

not used between the pair of instances. Note, by making the correct predicates the

positive samples, precision is the number of times we are right when we think the

predicate is the correct one. This is different from precision in the real error detection

experiments: where precision is the number of reported anomalies that are actually

errors. For negative samples, it is expected that no relation between the objects is

entailed by the system with a score above the threshold β and so the system reports

it as no credible relation. Following the typical assessment approach for classification

problems, all experimental results are measured in terms of precision, recall and F-

measure. Specifically, given equal amount of positives and negatives in test set, I

get the confusion matrix for them and calculate the precision as true positives /

(true positives + false positives) and recall as true positives / (true positives + false

negatives).

5.3.1 Parameters Analysis

After the learning process, I first checked the result of model parameters, i.e. pred-

icate similarities (shown in table 5.1). For each pair of predicates, the initial value

is the percentage of their actual overlapping usages in the data set. For example

0.53 is the initial value of the similarity between hasTopic and topic, which means

that there are about 53% of pairs of objects in these triples used both the predi-

cate hasTopic and topic. In reality, these initial values can be input by the user, if

the user believe a pair of properties are similar. The result value is the predicate

similarity given by the system after the learning process. For example, 0.94 is the

similarity between the predicate hasTopic and topic computed by the system. Since

112



www.manaraa.com

Table 5.1: Some predicate pairs from SWRC and DBpedia and their result similarity
values.
Predicate Pair Initial / Result
http://data.semanticweb.org/ns/swc/ontology/hasTopic, 0.53/0.94
http://xmlns.com/foaf/0.1/topic
http://purl.org/dc/terms/creator−, 0.76/0.91
http://xmlns.com/foaf/0.1/made
http://dbpedia.org/ontology/SpaceMission/nextMission, 0.91/0.98
http://dbpedia.org/ontology/SpaceMission/previousMission−

http://purl.org/dc/terms/creator, 0.87/0.93
http://xmlns.com/foaf/0.1/maker
http://swrc.ontoware.org/ontology/author, 0.69/0.91
http://purl.org/dc/terms/creator
http://dbpedia.org/ontology/Work/subsequentWork, 0.50/0.86
http://dbpedia.org/ontology/Work/previousWork−

http://swrc.ontoware.org/ontology/author, 0.71/0.92
http://xmlns.com/foaf/0.1/maker
http://swrc.ontoware.org/ontology/title, 0.20/0.82
http://purl.org/dc/terms/title
http://dbpedia.org/ontology/Person/predecessor, 0.43/0.83
http://dbpedia.org/ontology/Person/successor−

http://swrc.ontoware.org/ontology/author−, 0.80/0.92
http://xmlns.com/foaf/0.1/made
http://xmlns.com/foaf/0.1/accountName, 0.25/0.73
http://rdfs.org/sioc/ns/name
http://dbpedia.org/ontology/Organisation/foundationPerson, 0.24/0.67
http://dbpedia.org/ontology/Organisation/foundationOrg.
http://swrc.ontoware.org/ontology/affiliation−, 0.76/0.91
http://xmlns.com/foaf/0.1/member
http://xmlns.com/foaf/0.1/homepage, 0.08/0.51
http://xmlns.com/foaf/0.1/page
http://dbpedia.org/ontology/Person/nationality, 0.02/0.43
http://dbpedia.org/ontology/Person/birthPlace

113



www.manaraa.com

I do not have ground truth of the similarity, I manually checked 20 pairs of them.

Most computed similarity values are higher than the initial ones (it can be noted

in the table). The reason is that if some actual overlapping usages appear in the

data set, they indeed have some similarity and so make the authors of the data set

free to choose either of the predicates at least for some triples. Second, usually the

authors of a data set would not create triples using both of the predicates at most

cases, since the data might be simply redundant. Combining the above two reasons,

the initial value, i.e. the percentage of actual overlapping usages usually is far less

than their similarity measure and is just a hint of possible similarity in semantics.

I also noticed that two of the computed values are lower than the initial value, i.e.

actual overlapping percentages. For example, the predicate pair of instrument and

occupation have about 4% actual overlapping and the result value given by the sys-

tem is lower than 0.01. This example again shows that the overlapping is just a

hint and the hint may be either true or false. In this case, it is a bit arguable that

whether these two predicates are similar, because it might depend on the domain the

data set focus on. But in DBpedia, given the domain of instrument is owl : Thing,

i.e. anything in the domain that DBpedia covers, I think the system results truly

reflect their relationship, i.e. not much similar. In general, I note that the results are

consistent with my expectations on these predicate similarities, although no map-

pings are defined between them. They include possible equivalent property pairs

(e.g. d:hasTopic and f:topic), subsumption property pairs (e.g. f:homepage, f:page),

datatype property pairs (e.g. s:title and p:title), possible inverse property pairs (e.g.

ds:nextMission and ds:previousMission). Note these intermediate results could also

be used for ontology alignment.

5.3.2 Results

In the first experiment, I compared the F-score, precision and recall when the ex-

pansion factor α (Section 5.1.2) and the threshold β (Section 5.3) varies (shown in

Figure 5.2 and Figure 5.3). From the results, we can see that the system without

114



www.manaraa.com

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Beta

F
-m

e
a

s
u

r
e

α = 0

α = 0.1

α = 0.3

α = 0.5

Figure 5.2: The effect of different expan-
sion factor α and different credible rela-
tion threshold β on F-score and SWRC.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Beta

F
-m

e
a

s
u

r
e

α = 0

α = 0.3

α = 0.5

α = 0.7

Figure 5.3: The effect of different expan-
sion factor α and different credible rela-
tion threshold β on F-score and DBpedia.

expansion (α = 0) basically is worse than any systems with expansion and when us-

ing the contexts with expansion, the systems with α = 0.3 and α = 0.5 are the best

on SWRC and DBPedia, respectively (in following experiments, the α will be set as

these values in two data sets respectively). When the system does no expansion, it

is similar to my previous system and the performance gaps between this system and

that one are in range of 1% to 5% on different points of the curve. To not overwhelm

readers, the lines with other alpha values are not shown here. The reason DBpedia

needs more context expansion is that it has less relational descriptions for instances

than SWRC. For β, the system performs the best on both data sets when it is 0.4.

In the second experiment, I compared the system performance with and without

predicate similarity learning when the number of missing triples in the data set

varies (Figure 5.8). As introduced, the predicate similarity is the parameters for the

classifier determining the type of relationship. In the system without learning, the

property similarities are set as the percentage of their actual overlapping usages in

the data set. While in the system with learning, the property similarities are set as

the learned results. In the test, we randomly removed some portion of triples in the

data set in order to simulate the open world assumption. From the results, we see

the system with learning is better, since the performance gap between two systems

become bigger when more triples in the data set are missing. The reason is that as

115



www.manaraa.com

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Beta

P
r
e
c
is

io
n

α = 0

α = 0.1

α = 0.3

α = 0.5

Figure 5.4: The effect of different expan-
sion factor α and different credible rela-
tion threshold β on precision and SWRC.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Beta

P
r
e
c
is

io
n

α = 0

α = 0.3

α = 0.5

α = 0.7

Figure 5.5: The effect of different expan-
sion factor α and different credible rela-
tion threshold β on precision and DBpe-
dia.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Beta

R
e
c
a

ll
ll

α = 0

α = 0.1

α = 0.3

α = 0.5

Figure 5.6: The effect of different expan-
sion factor α and different credible rela-
tion threshold β on recall and SWRC.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Beta

R
e
c
a

ll

α = 0

α = 0.3

α = 0.5

α = 0.7

Figure 5.7: The effect of different expan-
sion factor α and different credible rela-
tion threshold β on recall and DBpedia.

the context information shrinks, the exact matching for semantic connections will

be rarer. Then partial matching for semantic connections affect the result more and

so the effects of predicate similarity become larger.

The next experiment is to test various sampling thresholds γ (Section 5.2.3) on

SWRC. In this experiment (shown in Figure 5.9), time is measured by wall clock

and the program is run with one thread on a Sun workstation with 8 Xeon 2.93G

cores. When sampling, the time includes both clustering and learning. We note

that when γ = 0.85, on average every two samples are compressed into one because

the learning time is reduced to about 1/4 of original learning time. For this value,

116



www.manaraa.com

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.00 0.10 0.20 0.30 0.40
Triples Removed

F
-m
e
a
su
r
e

SWRCwithLearning
SWRCnoLearning
DBPwithLearning
DBPnoLearning

Figure 5.8: The effect of clustering threshold γ on learning time and performance.

5

7

9

11

13

15

17

19

21

23

1 0.95 0.9 0.85 0.8 0.75 0.7
Gamma

T
im

e
 (
h
o
u
r
s)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
-m

e
a
su

r
e

LearningTime

Performance

Figure 5.9: The effect of clustering threshold γ on learning time and performance.

the F-measure only decreases by 4%. But when γ < 0.8, the time saved is less and

performance comparatively drops faster. In other words, we see diminishing returns:

the computation/F-measure trade off becomes unfavorite.

The last group of experiments is designed to compare if the system is better

than my previous system on two aspects. The one aspect is about closed world

assumption or open world assumption, which is different in the two systems. The

the other aspect that I want to compare is about the assumption that the training

data set is generally correct. Fig. 5.10 and 5.11 shows these comparisons. The

lines of SWRC closed and DBP closed are the performance of my previous system.

117



www.manaraa.com

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.10 0.20 0.30 0.40
Triples Removed

F
-m

e
a
su
r
e

SWRC
SWRC_closed
DBP
DBP_closed

Figure 5.10: Comparison of the effects of removing data from the referenced data
set on the current system and on the previous system.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Erroneous Triples

F
-m

e
a
su
r
e

SWRC
SWRC_closed
DBP
DBP_closed

Figure 5.11: Comparison of the effects of erroneous data in the referenced data set
on the current system and on the previous system.

118



www.manaraa.com

The first clear observation is that, as expected, this system performs much better

than the previous system on every points in the two figures. Specifically, when

10% triples removed from training set, the system performance gaps increase by

2% on both data sets. The second observation is that this system is affected much

less than the previous system when the open world assumption is applied to the

data set, i.e. when significant portion of data is removed, because the slope of

performance drop on this system is not as sharp as that of the previous system.

Fig. 5.11 shows experiments based on training data sets injected with some portion

of synthetic incorrect triples. Since the system still assumes that the training set is

generally correct, it is expected that the more incorrect triples injected, the worse

performance is. It can be seen when about 10% of triples are incorrect, the F-

measure of both systems only drops about 3%. The reason the system is robust is

that the probabilistic rules are learned based on the agreement between data, and

small portion of incorrect triples is hard to make many other data agree with it.

But it can also be recognized that, when the data set has some incorrect data, the

trends of two system performances are similar.

In summary, the major observations in these experiments are as follows. The

experiments basically show that the system satisfied the two design goals: 1) in a

Semantic Web data set to which the open world assumption is applied, the sys-

tem needs to discover common characteristics that are similar to those used in the

previous system; 2) when computing the similarity between contexts of triples, the

system needs to consider the open world assumption. In addition, the predicate

similarities, i.e. the classifier parameters, as the result of learning, are also useful

for other tasks, e.g. ontology alignment. However in the experiments, it is also can

be noticed that the system accuracy is affected more when the training data set is

not generally correct, than when other aspects are changed, e.g. removal of triples.

I believe it might not be a usual case that users take a data set that is already rec-

ognized as not generally correct for training purpose. But I can still imagine some

cases when there is no clean data set is available for training in advance. Therefore

in those cases, it would be necessary to design another system dealing with this case.

119



www.manaraa.com

120



www.manaraa.com

Chapter 6

Data Correctness without Training

The previous two chapters addressed some research problems of detecting quality

issues in Semantic Web data. More importantly, they clearly demonstrated the

essential forms of useful, potential patterns in many Semantic Web data. However

as I summarized through experiments on previous systems, it can be recognized that

both of these algorithms require a training data set which is assumed to be generally

correct (less than 5% errors in a rough estimation). Although this general idea that

training on clean data and then applying the system to new data is frequently used

in various data quality techniques based on learning or classification [29], there are

many real world cases where there is no clean data set is available for training in

advance. Therefore it would be necessary to design a system for dealing with these

cases. Furthermore, the systems I have designed in previous chapters and to be

designed in this chapter are all unsupervised learning systems. Thus, from a machine

learning theory perspective, learning from noisy data is also an important scenario

to be considered [29]. So the primary research question for this scenario would be

whether the system can without supervision discover correct patterns in the data to

be evaluated rather than learning from training data in advance. Another research

problem or challenge is that the data where patterns are discovered is expected to

contain significant incorrect data, instead of being assumed to be generally correct

as the training data in previous systems. There is no need to alter the form of the

learned patterns. But the discover process may need to be more complex in order to

121



www.manaraa.com

take into account the data with different reliability and then differentiate reliability

of the patterns. The general process of a system that overcomes these challenges is

to extract patterns from data, compute/refine probabilities of patterns and in turn

use patterns to evaluate data. An iterative approach appears to be suitable for this

problem [103].

6.1 Approach Overview

Based on the research problem posed and the brief analysis given above, now I give

a overview of the designed iterative approach (shown in Fig. 6.1). Compared with

algorithms in Chapter 4 and 5, the first major change is to consider the possibility of

noise in the data when learning. Recall from section 4.5 that patterns are based on

semantic connections and instantiations of semantic connections affect the weights

of patterns. Instantiations for a semantic connection are Paths (Definition 12) on

an RDF graph on which the semantic connection is embedded as a sequence of

predicate usages. The patterns to be discovered here can be similar in form, i.e.

they might be still based on semantic connections and affected by instantiations of

this pattern, i.e. some Paths (Definition 2) on the RDF graph. However, if the

confidence in the underlying triples that makes up two Paths is different, then the

weight of these Paths should be different, whereas previously, I have treated all

Paths as equal evidence for semantic connections. Besides the major change for

system accuracy, another major change is for system efficiency. Because the system

will retrieve context for every triple in each iteration, the context extraction can be

changed from a per triple basis to per RDF graph basis. There are three reasons for

that. First I realized that many contexts for triples have overlapping triples. Thus

constructing contexts on a per triple basis results in many redundant computations.

Second, semantic connections are extracted from Paths in the contextual RDF graph

for triples. A semantic connection is supporting evidence for a triple only if a Path

where this semantic connection is extracted shares the same instances on the two

ends with this triple on the RDF graph. Thus these Paths and the triple actually

122



www.manaraa.com

forms cycles on the undirected RDF graph. Then for each cycle, given any segment,

Paths based on the remaining segments could be an evidence that the system is

looking for. Therefore, searching the same cycle starting at different points on

it is redundant when the system tries to search supporting evidence for different

segments in the cycle. Third, since the weight of a pattern will be computed based

on a triple’s truth probability, we need an efficient mechanism to retrieve the triples

that compose of instantiations of any pattern repeatedly during the iterative learning

process. Although, these resulting triples can be stored and so can be reused in later

iterations, considering scalability, the space complexity of the storage would be in

proportion of data set size and much likely huge (almost quadratic, since lots of

overlapped triples that are composed of instantiations of patterns). Therefore, I

need to invent an efficient way to retrieve triples for a given pattern and a more

efficient data structure is necessary.

The detailed main process of the approach is in Algorithm 2. First, every triple

is assigned a prior truth probability. The function Prior Prob in Algorithm 2 re-

turns PE which is a vector of triple’s probabilities corresponding to each triple in E.

A straightforward assignment without prior knowledge would be using a uniform

distribution, i.e. all triples are equal likely (in)correct, e.g. 0.5. The other type of

meaningful assignment is to take into account the prior or domain knowledge of the

data. An example prior probability assignment based on prior knowledge could be

a function of the source that contains the triple, e.g. all triples in a certain source

have a particular value. Next (see Section 6.2.1), the system builds a summary

graph over the original RDF graph in order to efficiently extract all candidate se-

mantic dependencies (SD) and their instantiations (function Find SD() in Section

6.2.2). A semantic dependency is a rule that is similar to association rules which

have been utilized in some previous research work on data cleansing and outlier

detection (as discussed in Section 2.2.3). Using the instantiations and prior proba-

bility of triples, the system determines the truth probability of each SD. The function

Get Prob SD() (see Section 6.3.1) returns PS which is a set of SD/probability pairs.

Taking a logic perspective, these SDs are also probabilistic axioms over the original

ontology. The next important step (function Refine Prob SD() in Section 6.3.2)

123



www.manaraa.com

Semantic Web data

Abnormal 

Semantic Web data

Triples of low 

probability

Assign triple prior 

probability

Build summary graph

Find candidate 

Semantic Dependency

Get probability of SD

Get posterior 

probability of triple

Probability of triple 

converges?

No

Figure 6.1: The work flow of the system without referenced data set.

is to refine the beliefs of them according to their logical relations, e.g. inconsisten-

cies. The final step in each iteration (function Get Prob Triple() in Section 6.3.3)

is to get a score for each triple based on the number and the probability of the SDs

that could corroborate it. Then the system transforms the triple score into a prior

probability to be used in the next iteration until the stopping condition is satisfied.

Shown in the algorithm, the stopping condition of the iterative process is when

the difference between the posterior probability and prior probability of every triple

is less than a predetermined threshold. The iterative process would terminate under

all the three possible situations about the change of a triple’s score. First, the score

may be monotonic, either increasing or decreasing. Since the triple’s score will be

bounded within [0, 1] (details will be given in section 6.3.3), in the extreme case, a

124



www.manaraa.com

triple finally will get 0 or 1 and there is no change any more. Thus it will satisfy the

stopping condition. Second, the score may not be monotonic but the absolute value

of the score’s gradient decreases. This will satisfy the stopping condition at certain

time when the change falls into a given threshold. The last case is that the triple

score is oscillating and the changes do not decrease. It means that the system can

only bound the triple score into a range. Due to the weak law of large numbers, if

we take the average over all iterations as its score, then the score is expected to be

close to the expected value. The weak law of large numbers states that the sample

average converges in probability towards the expected value Xn
p−→ µ when n→∞

(see Probability Theory [62] Chapter 1). That is to say that for any positive number

ϵ, limn→∞ Pr
(
|Xn − µ| > ε

)
= 0. Interpreting this result, the weak law essentially

states that for any nonzero margin specified, no matter how small, with a sufficiently

large sample there will be a very high probability that the average of the observations

will be close to the expected value, that is, within the margin. Due to this reason, for

every triple, the algorithm keeps its average probability until the current iteration

and compare it with the average probability in previous iteration, when the first two

stopping conditions do not apply.

6.2 Semantic Dependency

I first define semantic dependencies, compare them with association rules and then

introduce how to efficiently find them in a given RDF data set.

Definition 17. Given an RDF graph G:=(I,L,R,E), a Semantic Dependency (SD) s

in graph G is x→ y, where x is a semantic connection, y ∈ R and ∃p ∈ Inst(x,G),

First(p) = I0 and Last(p) = In, s.t. (I0, y, In) ∈ E. For convenience, let LHS(s) =

x and RHS(s) = y. A semantic dependency has an associated probability.

Recall association rules as discussed in chapter 2, the data set in question is

defined as the basket data B = {b1, b2, ..., bn}, where each basket bi ⊆ I is a collection

of items, and where I = {i1, i2, ..., ik} is a set of k elements. Then the general

definition of an association rule is A⇒ B, where A and B are disjoint sets of items,

125



www.manaraa.com

Algorithm 2 Main(G, α), G = (I, L, E, R) is an RDF graph, α is a stopping
threshold

1: PE ← Prior Prob(E) //PE is a vector of triple’s probabilities
2: AvgE ← PE

3: G′ ← Build Summary(G) //Build summary graph G’
4: SD ← Find SD(G′, G)
5: i = 1
6: for i <∞ do
7: P ′

E ← PE

8: Avg′E ← AvgE
9: PS ← Get Prob SD(SD,P ′

E, G)
10: PS ← Refine Prob SD(PS)
11: PE ← Get Prob Triple(PS, G)
12: AvgE ← (PE + i · Avg′E)/(i+ 1)
13: if ∀t ∈ E, |P ′

E[t]− PE[t]| < α or |Avg′E[t]− AvgE[t]| < α then
14: break
15: i← i+ 1

where A is referred to as the antecedent (or left-hand side) of the rule, and B as the

consequence (or right-hand side) of the rule. A natural language version of a real

association rule is phrased as: “50% of people who buy both diapers and potatoes,

also buy beer.”

Comparing between semantic dependency and association rules, they both con-

sist of two parts: left-hand side (LHS) and right-hand side (RHS); they both have

similar implication semantics: the RHS is conclusion of LHS (or premise). So I

compare each side respectively. On the left side, an association rule has a set of

items. The set of items just means they co-occurred in some baskets, which in

this thesis could be considered contexts. In other words, association rules typically

do not consider the order of items either within a basket or across baskets. In a

semantic dependency, the left-hand side is also showing a co-occurrence of some

items, i.e. predicates. However semantic connections (Definition 12) are defined

as an ordering over predicates. This order gives more semantics, because they are

connected by certain join conditions. In addition, this characteristic also serves as

126



www.manaraa.com

important heuristic to be used in the process for discovering these rules. The right-

hand side of an association rule is another item which co-occurs with the set of

items on the left-hand side. Similarly, the right-hand side of a semantic dependency

also co-occurs with the set of left-hand side predicates. However, the co-occurrence

between the LHS and RHS of a semantic dependency has an additional restric-

tion that they share the same instances on the two ends. After comparing on two

sides each, taking association rule as a whole, it has confidence and support mea-

sure. The semantic dependency has also a probability measure which is similar to

the confidence. But we do not use support for any given SD, we use these SDs

through majority voting for a triple. These differences are all designed to capture

the characteristics of RDF data which is a graph data model and support seman-

tics specified entailment, since every semantic dependency can be represented as

axioms using description logic (DL) using OWL 2 features1 (as discussed in Sec-

tion 2). For example a SD locatedIn ◦ partOf → locatedIn can be represented as

locatedIn ◦ partOf ⊑ locatedIn, which means that if x is located in y and y is part

of z then x is located in z.

6.2.1 Summary Graph

As I discussed earlier, the system requires an efficient data structure to discover SDs

and support the retrieval of triples that are instantiations of SDs. The definition

of SD shows that the LHS of a SD is a semantic connection. So the precondition

of discovering SDs is to find all semantic connections that can contribute to SDs

first. A semantic connection is extracted from Paths on the RDF graph. Each

pair of consecutive predicates on a semantic connection is related because some

triples of the preceding predicate share the objects with triples of the subsequent

predicate. Besides the LHS of a SD is based on predicate composition, both ends of

the RHS of a SD is also joined with both ends of the LHS of this SD. An intuitive

way to find such join connections is to compute intersections between all pair wise

property instances. But enumerating all possible semantic connections by computing

1http://www.w3.org/TR/owl2-overview/

127



www.manaraa.com

the instance intersections between all pair wise relations is very time consuming,

especially considering most of the pairs do not have intersections. Thus a goal is to

reduce the number of joins required to discover a semantic connection. Based on

this observation, I want to first prune those pairs of sets that cannot have overlap.

Since finding instantiations of these semantic connections is similar to using

the Basic Graph Pattern (BGP) in a SPARQL query [89] and the pruning to be

designed is similar to BGP query optimization, my solution for improving efficiency

of discovering SDs is inspired by the BGP query optimization. Query optimization

is a fundamental and crucial subtask of query execution in database management

systems and likewise in RDF triple store management systems. One of important

optimization techniques for an RDF triple store management systems is static query

optimization, i.e. a join order optimization of triple patterns performed before query

evaluation. The optimization goal is to find the execution plan which is expected

to return the result set fastest without actually executing the query or subparts.

This is typically solved by means of heuristics and summaries for statistics about

the data. The execution time of queries is heavily influenced by the number of joins

necessary to find the results of the query. Therefore, the goal of query optimization

is (among other things) to reduce the number of joins required to evaluate a query.

A single computation on the intersection of two relations p1 and p2 is like a

query on instances that can be defined as the SPARQL query below.

SELECT ?x

WHERE {

?a p1 ?x

?x p2 ?b

}

To make such existential queries be more efficient, I built a summary graph G′ =

(I ′, L′, E ′, R) corresponding to the original graph G = (I, L,E,R). This summary

graph rules out most of the pairs of predicates that have no join relations in the

data. Each connected pair of edges on the summary graph means that it is possible

that the two predicates represented by the two edges can have join relation. An

128



www.manaraa.com

individual in I ′ represents individuals in I which are used as the domains or ranges

of same group of properties. Formally graph G′ is a summary of an RDF graph G

if there is a mapping function f : I → I ′ that satisfies the following constraints:

1. if P (a, b) ∈ E then P (f(a), f(b)) ∈ E ′.

2. if P (a′, b′) ∈ E ′ then ∃a, b ∈ E, s.t. a′ = f(a), b′ = f(b) and P (a, b) ∈ E.

The process for constructing the summary graph (the function build Summary()

in the Algorithm 2) can be done efficiently from G using SPARQL queries. The pro-

cess to construct the summary graph compresses one predicate on each iteration by

merging all the domain objects and range objects into two summary representative

nodes. Meanwhile it merges all other property links connected with the nodes being

merged. When all predicates are compressed, the iteration stops. In the example

summary building process (shown in Fig. 6.2), Fig. 6.2 (b) is an intermediate state

that the node P1 and P2 are merged because they are both used as the object

value of the predicate author and the node A1 and A2 are merged because they

are both used as subject of the predicate author. Meanwhile, all other edges from

and to these nodes are merged, e.g. the edge hasTopic from node A1 is changed to

starting from new node A12. If two edges are connected through a common node

on the summary graph, the implication is that the two properties represented by

them possibly can be joined. Thus this summary graph facilitates the process of

finding all candidate semantic connections and thereby SDs as well, since semantic

connections are the basis of SDs. Generally, the summary graph G′ is dramatically

smaller than the original RDF graph G and is easily implemented as in-memory

graph model.

6.2.2 Finding Candidate Semantic Dependencies

In this and following subsection, I discuss the two main steps in the function

Find SD() in Algorithm 2. As defined, one of the important pre-conditions of a

semantic dependency is that the first instance of some instantiations of premise

is the same as the subject of instantiation of the conclusion and the last instance

129



www.manaraa.com

affiliation

made

made

hasTopic

interest
member

author

made

S

R

P3 A3
R

P123

made

affiliation
member

interest

author

S

hasTopic

member
made interest

hasTopic

S

hasTopic

P3

P1 A1

A2

R

A3

affiliation

P2affiliation

author

author

author
made

(a) (b) (c)

A12

P12

A123

Figure 6.2: An example process building a summary graph. The summarized pred-
icates are highlighted and the summarized nodes are shaded. (a) The original RDF
graph. (b) An intermediate state of building the summary graph where the pred-
icate author is summarized. (c) An intermediate state of building the summary
graph where the predicate made is summarized.

of some instantiations of premise is the same as the object of instantiation of the

conclusion. When applied to the summary graph, this condition means there is a

semantic connection, where is expressed as a path of multiple edges on the summary

graph that connects two end points of a single edge on the summary graph (i.e. a

relation). Then if we find such a case on the summary graph, there could be a

semantic dependency whose premise is that semantic connection and conclusion is

the direct relation. For example, the semantic connection consisting of made and

hasTopic on Fig. 6.2 (c) connects the two end points of the interest. So a candidate

SD could be made ◦ hasTopic → interest. Note the direction on the summary graph

only reflects the predicate used in real data, however the semantics of the inverse

relation of that predicate is also demonstrated, even if the inverse property is not

explicitly defined in data. For example, hasTopic ◦ interest− → author is also a

candidate SD though the inverse of interest may not be defined in the original data

set. Based on this point, a SD is embedded as a cycle on the undirected summary

graph. Then the algorithm finding all possible SDs is transformed to find all undi-

rected cycles on the summary graph and then recover the directionality of properties

in the premise according to the direction of conclusion. The algorithm to determine

130



www.manaraa.com

if these candidate SDs found are truly SDs will be given in next subsection.

To detect all cycles in the summary graph, I used Mateti and Deo’s [66] algo-

rithm. The algorithm has three main stages. The first is a standard depth first

search (DFS) starting with any node which outputs a spanning tree (or more if

the graph is not connected). Based on this spanning tree, the edges of the original

graph are in two types: forward edges, which point from a node of the tree to one of

its descendants and belong to the spanning tree itself, and back edges, which point

from a node to one of its ancestors. For example, in Fig. 6.3, given graph (a), DFS

will generate a tree (b) and three back edges (6,4), (6,3) and (6,2). Second, given

the spanning tree(s), each cycle corresponding to each back edge is found. All these

cycles are collected in a cycle base with size m - (n - 1), where m and n are the num-

ber of edges and nodes in a graph, because n-1 edges in spanning tree and all others

are back edges. The cycles in a cycle base are independent in the sense that no one

cycle in the set can be constructed by the union (defined below) of two or more

other cycles of the set. The cycle base is not unique, because we can get different

trees by starting the depth first search from different nodes. In Fig. 6.3, graph (c),

(d), and (e) are cycles corresponding to three back edges found previously and they

form into a cycle base. Finally, every other cycle of the graph (any one not in the

cycle base) can be obtained by the combination of two or more cycles in the cycle

base. The combination operation is an bit XOR operation by representing cycles

in edge incidence vectors. A edge incidence vector use each edge on the graph as

the element of a vector. In this example, if the edge incidence vector is [(1,2) (2,3)

(2,6) (3,4) (3,6) (4,5) (4,6) (5,6)], then the cycle (d) is represented as [00011101] and

(e) [01110101]. So the union of them will produce [01101000] which corresponds to

cycle (2,3,6,2) (shown as Fig.6.3 (f)). One special case is that an edge is from and

to the same node, i.e. self-loop. In that case, I can just add this self-cycle edge any

times into the cycles the algorithm found to form a new cycle, if the original cycle

contains the node that the special edge is on. Because there is a length limit for a

semantic connection, the cycles with self-loop edges are also limited. Although in

theory, there is no limit on the length of a semantic connection (Definition 12), its

semantic meaning becomes vague if too many relations are joined between a pair

131



www.manaraa.com

②
③

④

⑤
⑥

(b) 

④

⑤
⑥

(c) 

③

④

⑤
⑥

(d) 

②
③

④

⑤
⑥

(e) 

②
③

⑥

(f) (a) 

➀

②
③

④

⑤
⑥

➀

Figure 6.3: An example process of finding all cycles in an undirected graph. (a) is
the graph. (b) is the spanning tree created by a DFS starting at node 1. (c), (d)
and (e) are three cycles for three back edges found in DFS. (f) is a cycle obtained
by combining cycle (d) and (e).

of objects. Since the semantic connections found by the system are used to deter-

mine the dependency among relations between objects, it would be unreasonable

if no length limit is set. According to my observations and discussions in previous

chapters, I set the maximum length of a semantic connection as five in this work as

well.

I use summary graph to detect candidate semantic dependencies, but not all of

these correspond to real semantic dependencies, some are artifacts of the abstraction

process. In other words, a candidate SD is true only if there are instantiations in the

data set. Since each SD is a cycle on the summary graph consisting of its premise and

conclusion, a SD is a special semantic connection whose head and tail are the same.

Thus the function Inst() to find instantiations of a semantic connection is generic

for a whole SD or its premise only (i.e. a semantic connection). Each semantic

connection is computed by the function once and stored for later use. The function

Inst() returns all the Paths that are instantiations of the semantic connection. This

function can efficiently be computed by using SPARQL queries.

6.3 Probability of Semantic Dependency

Given the output PE (pairs of triple / prior probability) returned by function

Prior Prob(), this section will introduce the function Get Prob SD() to determine

132



www.manaraa.com

SD’s probability and the function to refine the belief of SDs. The final part of

this section is about the function Get Prob Triple() which computes the posterior

probability of triples based on SDs.

6.3.1 Computing Probability of a Semantic Dependency

Each cycle the system found on the summary graph can be interpreted as mul-

tiple SDs. For example, in Fig. 6.2 (c), the cycle consisting of make, topic and

interest can be interpreted as three SDs whose conclusions are these three relations

respectively. Intuitively, the conclusion of interest derived from the premise made ◦
hasTopic might be more believable than the conclusion of made derived from inter-

est ◦ hasTopic−. The analysis under the intuition is that the premise is more specific

than the conclusion and there are less counter examples. Thus the probability of

SDs in the same cycle should be different and I consider the following in its compu-

tation. First, the more the instantiations of a SD there are, the more believable a SD

is. Second, each time the premise is instantiated, but the conclusion not, decrease

our belief in this SD, because we have found a counter example. Third, the belief of

triples involved in these instantiations affects the belief of a SD. Therefore, taking

the triples and their prior probabilities as inputs, the probability of a SD s is defined

as equation 6.1, which is the sum of the probability of SD instantiations divided by

the number of premise instantiations. The function Inst() is introduced earlier and

LHS() is shown in Definition 17 previously. PE is a vector of probabilities for each

triple. The common naive Bayes assumption is used here. Since the product of the

probability of triples on a Path is less than or equal to 1 and the number of Paths

in Inst(s) is less than or equal to those in Inst(LHS(s)) because the former is a

stronger constraint than the latter, the equation guarantees the probability is in [0,

1].

Get Prob SD(s,G, PE) =

∑
i∈Inst(s,G)

∏
t∈i PE[t]

|Inst(LHS(s), G)|
(6.1)

133



www.manaraa.com

6.3.2 Refine Probability of a Semantic Dependency

From a logic perspective, the SDs that the system discovered are also probabilistic

axioms defined over the original ontology that the data conforms to. In a well-formed

ontology, the TBox concepts should be consistent and all concepts and properties

should be satisfiable. Thus, based on the explicitly defined original TBox and these

probabilistic axioms deduced from the data, it is necessary to do a consistency

check on them and accordingly to revise the beliefs on these axioms. The function

Refine ProbSD() (line 7 in Algorithm 2 for this purpose will be discussed below.

All SDs can be represented as property chain axioms in description logic (DL)

using OWL 2 features2. I use the reasoner Pellet3 to check consistency and sat-

isfiability and use its explanation generator to get the set of axioms causing that

problem. An important satisfiability check is about property. For example, if two

axioms are p1 ◦ p2→ p3 and D(p1) ⊓D(p3) ⊑ ⊥ (i.e. the domains of the property

p1 and p3 are disjoint), the unsatisfiability of p1 or p3 should be detected by such

check. However, to the best of my knowledge, no popular DL reasoners support the

property satisfiability check. But, an inferred unsatisfiable axiom is an important

indication to the necessity of adjusting the belief of the axioms involved in this

inference. In addition to using a standard DL reasoner, I include the following cus-

tomized check for unsatisfiability. I first compute the fixed point over these axioms.

Because I only check logic consistency between the domain of the head property

(Definition 12) and the conclusion property, between the range of the tail property

(Definition 12) and the conclusion property, the computation can be stopped when

there is no new head or tail property with respect to any conclusion. Although the

disjointness between classes have been shown as an important type of axioms for

evaluating ontology consistencies, in real world ontologies they are often missing

[93]. So in that case user can customize disjointness axioms in ontologies for this

check.

In order to determine the probability of axioms, I treat each as a proposition

2http://www.w3.org/TR/owl2-overview/
3http://clarkparsia.com/pellet/

134



www.manaraa.com

that can either be true or untrue in a possible world. I identify each possible world

by the set of axioms that are true in it. Having inconsistencies, axioms need to

be penalized if they are involved in this inference, which also makes other axioms

indirectly rewarded. Every group of inconsistent axioms we tracked is the minimal

set, i.e. no proper subset of this group can make this inconsistency. Intuitively, if a

possible world that has very small probability, e.g. 10−6, satisfies these axioms, the

degree of inconsistency of this group is very low and the axioms in it may not need

to be blamed too much. The reason is that in most of possible worlds (1 − 10−6),

they are satisfiable. Thus, the likelihood of possible worlds, whose set of axioms is

inconsistent, reflects the degree of inconsistency of this group of axioms. Therefore I

assume that each possible world contribute equally to the degree of inconsistency of

all groups of inconsistent axioms that it can entail. For example, if a possible world

entails three groups of inconsistent axioms, then each group of axioms get 1/3 of

contribution from this possible world. The probability of each possible world is equal

to the multiplication of the probabilities of every axiom in it and they naturally sum

to 1.

Here is an example of the process of belief revision. There are three axioms,

a1, a2 and a3, the probability of them are p1, p2 and p3 respectively. So there

are 8 possible worlds in total, from ∅ with probability (1-p1)(1-p2)(1-p3) to {a1, a2,
a3} with probability p1p2p3. The sum of the possibilities of all possible worlds is

naturally equal to one. Suppose we have two inconsistent groups {a1, a3} and {a2,
a3}. The degree of inconsistency of group {a1, a3} is contributed by two parts. One

is the probability of the world {a1, a3} which is p1(1-p2)p3 and the other is half

of the probability of the world {a1, a2, a3} which is p1p2p3. We only say half of

because another inconsistent group {a2, a3} also can be entailed by this possible

world. Thus the degree of inconsistency of {a1, a3} is p1(1-p2)p3 + 1/2 p1p2p3.

Since the inconsistency of every group is caused by axioms in it, the degree

of inconsistency is partitioned onto each axiom within the group. Therefore, the

more groups of unsatisfiable groups that include an axiom, the more the axiom

is penalized. The reason is that usually the majority of the world knowledge is

compatible, so it is more likely to be erroneous when it conflicts more with other

135



www.manaraa.com

world knowledge. In the above example, since a3 is involved in more inconsistencies

than the other two axioms, it gets more abnormal belief. I subtract these abnormal

believes from the probabilities of SDs to adjust the probabilities of SDs.

6.3.3 Triple’s Posterior Probability

The purpose of finding semantic dependencies and computing their probabilities is

to compute triple scores by checking how these probabilistic axioms support each

triple. This is the last step in each iteration of the system. The algorithm is shown

in Algorithm 3. For each triple, the system iterates through all the SDs whose

conclusion is the same as the predicate of this triple. If the subject and object of

this triple appear as the first and last instance of an instantiation of the premise of

a SD, this premise instantiation can leads to the conclusion as this triple, which is

evidence supporting this triple. The normality score of this triple will be the sum

of the probability of all these SDs. Thus the minimum of the score is 0, i.e. no such

SDs can support it, and the largest theoretical score is the total probabilities of a

set of SDs with a certain conclusion, i.e. all these SDs can support it. Because the

scores in this range reflect certain probability of a triple’s normality, the larger the

score, the more likely the triple is normal. For convenience, we project these values

onto the range [0, 1] as probabilities by a normalization with the largest theoretical

sum. Finally, the algorithm returns the whole set of triples and each associated with

a probability and we put them in next iteration as triples’ prior probability.

6.4 Experiments

In the experiments for this algorithm, the data sets I used are the same as I chose

for previous algorithms (Section 5.3). But I didn’t split the dataset into training

and testing subsets, because this system does not require a high quality training

data set in advance. Using the process described in Section 5.3, abnormal triples

are created and added to the data set. Neither negative or positive triples are

labeled. Datatype properties are omitted from the data set because the algorithm

136



www.manaraa.com

Algorithm 3 Get Prob Triples(PS, G), PS is a set of pairs ⟨s, p⟩, i.e. a SD and its
probability, G = (I, L,E,R) is an RDF graph.

1: ∀e ∈ E,PE[e]← 0
2: for each t = ⟨sub, pred, obj⟩ ∈ E do
3: P = 0
4: for each ⟨s, p⟩ ∈ PS and RHS(s) = pred do
5: for each c ∈ Inst(LHS(s), G) do
6: if First(c) = sub and Last(c) = obj then
7: P = P + p
8: PE[t]← P
9: PE = PE/maxe∈E PE[e]
10: return PE

Table 6.1: Several example semantic dependencies in SWRC and DBpedia.
Semantic Dependency and its Description

made− ◦ affiliation ◦ member ◦ maker− ◦ hasTopic → hasTopic
Colleagues have papers with the same topic.
isPartOf ◦ isPartOf− ◦ hasTopic → hasTopic
Papers that are in the same part of a proceeding have the same topic.
author− ◦ creator ◦ author− ◦ made− ◦ heldBy− → holdsRole
Conferences where people publish have roles similar to those held by their
colleagues in other conferences.
publisher ◦ country ◦ language → language
The language of a publisher’s country is the same as the work’s language.
parentCompany ◦ keyperson → owner
The key person of the parent company is the owner of this company.

mainly focuses on object property triples. After running the system, every triple is

output with a score. The results are analyzed mainly from a query perspective, i.e.

given a credible threshold how many positive triples have scores that are above it

and how many negative triples have scores that are below it. Ideally, the system is

expected to differentiate all triples into two disjoint sets, the normal triples and the

abnormal triples, where the scores of triples in the normal set are higher than the

credible threshold which is higher than the scores of the triples in abnormal set. I use

standard information retrieval metrics for evaluation. Further I take my previous

system (Chapter 5) as the baseline system to compare. The detailed baseline system

137



www.manaraa.com

SWRC with 0.5 prior probabilitySWRC with 0.5 prior probabilitySWRC with 0.5 prior probabilitySWRC with 0.5 prior probability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

credible threshold

F
-m
e
a
s
u
r
e

33% Incorrect

16% Incorrect

9% Incorrect

33%Baseline

16%Baseline

9%Baseline

Figure 6.4: The effect of different percentage of abnormal data in SWRC and dif-
ferent credible relation threshold.

configuration will be given when I discuss the results.

6.4.1 Results

Before looking at the performance on differentiating triples, I first show several top

ranked interesting SDs in SWRC and DBpedia in Table 6.1. In the SD on the first

row, the LHS of this SD says the following. A paper P is made by a person who has

a certain affiliation and that affiliation has a member who is the maker of another

paper which has a certain topic. The RHS of it says that the paper P also has

that topic. Thus the underlying meaning is that colleagues often have papers with

the same topic (shown as description in the table). I note that these SDs may not

always be true, but most of them do give some sense about the expected context for

a triple. However, some SDs also are hard to interpret the meaning. For example

genre− ◦ artist ◦musicalArtist− ◦writer → composer. The situation here may be

unnecessarily complex SDs. Interesting future work would be to use simple SDs to

reduce complex SDs.

First, I show the system’s performance on data sets with different percentages

of abnormal data. All triples are assigned prior probability 0.5 and the stopping

138



www.manaraa.com

DBPedia with 0.5 Prior ProbabilityDBPedia with 0.5 Prior ProbabilityDBPedia with 0.5 Prior ProbabilityDBPedia with 0.5 Prior Probability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

credible threshold

F
-m
e
a
s
u
r
e

33% Incorrect

16% Incorrect

9% Incorrect

33%Baseline

16%Baseline

9%Baseline

Figure 6.5: The effect of different percentage of abnormal data in DBpedia and
different credible relation.

SWRC with  9% incorrect data

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

credible threshold

F
-m
e
a
s
u
re

0.2 Prior Probability

0.5 Prior Probability

0.8 Prior Probability

Figure 6.6: The effect of different prior probability assignments in SWRC.

139



www.manaraa.com

DBPedia with  9% incorrect data

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

credible threshold

F
-m
e
a
s
u
re

0.2 Prior Probability

0.5 Prior Probability

0.8 Prior Probability

Figure 6.7: The effect of different prior probability assignments in DBpedia.

threshold is set 0.01. We tested three ratios of abnormal triples to normal triples, 1

to 10 (9%), 1 to 5 (16%) and 1 : 2 (33%). From Fig. 6.4 and Fig. 6.5, we see the

loss on the best performance in each case is less than the corresponding increase of

the number of abnormal triples, e.g. there is only 3% loss on the best F-measures

from 16% to 33% abnormal triples on SWRC and 4% on DBpedia. In addition,

I compared with my previous system (chapter 5) which is shown as a baseline in

the figure. Because the previous system needs training in advance, the baseline is

running the previous system by using half of the data set as training and the other

half as testing set. I show the baseline system on the data set with 9%, 16% and

33% abnormal data, respectively. Thus comparing between baseline and this system,

both running on the data set with 33% incorrect data, it can be observed that my

previous system performs at least 10% worse than this system in two data sets. The

reason is that the previous system simply assumes that most data in the training

data is correct and patterns learned from the training data are all true. Therefore

when contexts of incorrect data in the test set exhibit the patterns similar to the

training set, the previous system considers them credible and does not label it as

incorrect.

Second, I investigated the effect of different prior probability assignments. From

140



www.manaraa.com

Table 6.2: The effect of different stopping thresholds on the system in SWRC.
α Threshold 0.001 0.005 0.01 0.05 0.1
time (hours) 5.8 3.9 2.9 1.8 0.8
iterations 28 19 13 8 3
F-measure 88.16% 87.44% 85.97% 81.71% 68.65%

Fig. 6.6 and Fig. 6.7, we see the difference on the highest score with different prior

probability assignment on data set with 9% incorrect data varies from 82% to 85%

on SWRC and from 80% to 81% on DBpedia. Note that for both data sets, higher

initial probabilities require higher threshold to maximize the F-measure. The reason

is that all triple scores are adjusted based on that initial value and it is natural that

the scores of abnormal triples go down due to penalties and others go up due to

the support of SDs. This is important in that users of the system can take the

credible threshold same as the prior probability that they set as the expected best

threshold. In addition, the best scores on two data sets with prior probability 0.5

are a little bit higher than all others. It probably means that this configuration can

give better space for the system to adjust the triple probability up or down. But it

also can be observed that when the prior probability is 0.8, there is less variation in

the F-scores, and on average are better than those for different prior probabilities,

since this number is the most close to the actual percentage of correct triples which

is 0.91 here.

Recall the system will iteratively refine the probabilities until no triple’s proba-

bility changes more than a threshold α. The third group of experiments shows the

effect of the stopping threshold on the system, such as the number of iterations,

the running time and the F-measure. These tests are done on the SWRC data set

with 0.5 prior probability. In Table 6.2, we see the F-measure increases when the

stopping threshold decreases. The system can achieve a good F-score in reasonable

time length and the stopping threshold does not need to be too small.

Finally to test the system in detecting true errors in original data set, I ran the

system over the original DBpedia data set without injecting any synthetic incorrect

data. The system is set with prior probability 0.5 and stopping threshold 0.005.

141



www.manaraa.com

Credible Threshold Number of Triples Reported Estimated Precision
0.5 53,271 2%
0.1 8,739 13%
0.05 1,635 15%

Table 6.3: The impact of credible threshold on the estimated precision of true errors
reported by system.

However, since it is impractical to manually check all of the abnormal data reported

by the system, I verified some of these triples (100). Table 6.3 shows the performance

of system on reported true errors. It can be seen that when the credible threshold

is lower, the precision is higher. However, the precision is very low even for low

thresholds. The reason could be that SDs do not have a measure of how broadly each

rule can be applied, which is similar to the measure of support used by association

rules. Thus it is possible in next algorithm to focus on stronger rules that are

applicable more broadly.

To conclude this chapter, I summarize major observations in experiments as

follows. The main research problem that this system is trying to solve is to dis-

cover useful patterns and detect quality issues without training in advance. The

experimental results demonstrated that the system can deal with a data set with a

significant portion of incorrect data (e.g. 33%) and accurately capture real patterns

underlying the correct data. In addition, the semantic dependency rules can be

helpful in many other applications, e.g. enriching or refining the ontology. Through

the final experiment on the data set not containing synthetic incorrect data, the

system again proves its capability to detect quality issues in Semantic Web data,

although with not quite high precision on true errors in real data. However fol-

lowing the similar ideas with previous systems, the rules discovered by this system

still rely on the explicit connection (i.e. reusing values among predicates) between

the premise and conclusion of this rule. It limits the triples in the evaluation to be

object property triples mostly. In addition, the LHS of a rule is a single semantic

connection so far. Therefore an immediate research question is whether there is a

way to expand these limits so that the rules become more general and the system

142



www.manaraa.com

can detect more errors in not only object property triples but also datatype property

triples.

143



www.manaraa.com

144



www.manaraa.com

Chapter 7

Detecting Abnormal Data using

Value-clustered Graph Functional

Dependency

In the previous chapters, I described three systems that can detect erroneous object

property triples in different real world scenarios. Meanwhile, I have refined and

clarified the forms and semantics of patterns of normal data. The system developed

in Chapter 6 succeeded in detecting abnormal data in the data set to be evaluated

without any learning. It is also confirmed that some erroneous triples can be found

in real world data sets. However, the patterns discovered in the previous system

are mainly based on explicit semantic connections (Definition 12) in data which is

through reusing values. This point also makes these patterns limited in applicability

and only strong enough to report abnormal data by essentially majority voting, but

perhaps it would be better to discover higher confidence rules and check them for

violations. Thus we need an iterative approach to detect some of abnormal data

that may have relatively more explicit anomalous characteristics (e.g. the synthetic

incorrect data). To make the approach more efficient (i.e., to avoid iterative pro-

cess) for detecting more implicit abnormal data, we need to find more, stronger and

145



www.manaraa.com

implicit patterns, compared to the previous systems. The patterns used in my pre-

vious work are semantic dependencies (Definition 17). I compared and contrasted

semantic dependency rules with association rules in databases. Generally, associ-

ation rules are dependencies that apply for particular values of some attributes.

There is another more common dependency in databases, functional dependency,

which is formally defined as follows [24]. Given a relation R, a set of attributes

X in R is said to functionally determine another attribute Y , also in R, (written

X → Y ), if and only if each X value is associated with precisely one Y value. An

example FD zipCode → state means, for any tuple, the value of zipCode determines

the value of state. Functional dependency is devised to specify missing semantics

in mere syntactic definitions of database relations [32], and compared to association

rules, they are dependencies that are valid for all values of some attributes [5]. Thus,

functional dependencies are stronger and never spurious. Therefore, it is possible

to detect abnormal data by checking conflict with a few functional dependencies,

instead of majority voting using dependencies that are similar to association rules.

Then, it would be easier and clearer to explain the reason why the reported data is

abnormal. This leads me to consider exploring the concept of finding the equivalent

of functional dependencies in RDF graphs.

7.1 Functional Dependency

The rules that my system tries to learn will eventually be used to detect abnormal

data that conflicts or does not satisfy them to some extent. From that perspec-

tive, these rules are similar to integrity constraints. Functional Dependency is by

far the most common integrity constraint for databases in the real world. They

are very important when designing or analyzing relational databases. Furthermore,

according to my discussion in the beginning of this chapter, the idea of functional

dependencies is a potentially fruitful direction for improving the patterns (e.g. se-

mantic dependencies) that are defined and used in my previous work. Thus I will

review the concept and techniques related to functional dependencies in this section.

146



www.manaraa.com

Armstrong [8] has defined useful axioms for inferring functional dependencies.

Given that X, Y , and Z are sets of attributes in a relation R, one can derive several

properties of functional dependencies. Among the most important are Armstrong’s

axioms, which are used in database normalization:

• Subset Property (Axiom of Reflexivity): If Y is a subset of X, then X → Y

• Augmentation (Axiom of Augmentation): If X → Y , then XZ → Y Z

• Transitivity (Axiom of Transitivity): If X → Y and Y → Z, then X → Z

From these rules, we can derive these secondary rules:

• Union: If X → Y and X → Z, then X → Y Z

• Decomposition: If X → Y Z, then X → Y and X → Z

• Pseudotransitivity: If X → Y and WY → Z, then WX → Z

Most database researchers agree with these rules. For example, Fagin [31] proves

that 1) Armstrong’s Dependency Axioms are complete for dependency statements

in the usual logical sense that they are strong enough to prove every consequence,

and that 2) Armstrong’s Axioms are also complete for implicational statements in

propositional logic.

Most approaches for finding FD [64, 49, 63] are mainly based on the concept

of an agree set [14]. Given a pair of tuples, the agree set is all the attributes for

which these tuples have the same values. Since the search for FDs occurs over a

given relation and each tuple has at most one value for each attribute, then each

tuple can be placed into exactly one cluster where all tuples in the cluster have the

same agree set with all other tuples. However, RDF data is not organized in the

form of tuples and it is the extensions of RDF properties, which are equivalent to

relations with only two attributes (i.e. the subject and object of the triple). To

check the value agreement across these relations, each property value may not be

placed in one and only one cluster. Thus agree sets are not very useful when applied

to RDF data. If all properties are single valued, we could create a tuple and find an

147



www.manaraa.com

agree set for it. However many properties in RDF data are multi-valued and so the

correlation between values of different properties becomes more complex. Finally,

since most RDF properties are designed just for a subset of instances in the data

set, an agree set-based approach will cluster many instances based on null values

alone. Finally, all these approaches do not find semantics of property values by

further explore property values of them. mapping values of immediate property for

a given set of instances, i.e. they do not consider some steps further. For example,

they do not consider the semantics of values of property father by further exploring

property brother usages on these values. Thus they cannot discover the relationship

of father ◦ brother (i.e. uncle) of original instances. However this characteristic of

path of properties is very important for RDF graphs.

RDF graphs are more like graph database models. When both the class schemas

and the instances in an object-oriented data model are interpreted as digraphs, the

value functional dependency (VFD) [59] defined for the object-oriented data model

can have multi-valued properties on the right-hand side, e.g. title → authors.

However the dependencies we envision can have multi-valued properties on both

sides and our system can determine the correlation between each value in both sets.

Back to 1990s, some researchers realized several problems with the relational model

when used for complex applications [54]. Some of these problems derive from its

notion of a property, and its strict separation of objects that must have property

values, called tuples, from objects that can be property values, called domain values.

An important consequence is that query languages which are variations of a “typed”

form of the tuple calculus, such as SQL or QUEL, require all terms to denote objects

that are domain values. This implies that users must introduce properties of objects

to serve as their means of reference, and that all relationships between objects must

be expressed indirectly in terms of these properties. Therefore some researchers tried

to combine the separate notions of domain and relation into a single notion of class,

and thereby allowed properties to be defined between any pair of classes. Terms in

query languages are then permitted to traverse any number of properties: none, in

recognition that objects that were tuples have separate identity, or more than one,

since objects that were domain values are now permitted to also have structure. This

148



www.manaraa.com

data model is called the semantic data model. The path functional dependency

(PFD) [98] defined for semantic data models considered multiple attributes on a

path, however the PFD did not consider multi-valued attributes. FDXML is the FD’s

counterpart in XML [58] where its left-hand side is a path starting from the XML

document root which essentially is another form of a record in a database. Hartmann

et al. [45] proposed a framework allows users to define functional dependencies

similar to those in previous works, but enables users to capture further kinds of

functional dependencies which happen to be useful in designing XML documents.

The basic equality comparison of values used in FD is limited in many situations,

for the following three reasons. Consider (1) for floating point numbers, rounding

and measurement errors must be considered. For example, there might be no much

difference in semantics between 1.000001 and 1.0. (2) Sometimes dependencies are

probabilistic in nature, and one-to-one value correspondences are inappropriate. For

example, the days to process an order for shipping a given product is usually limited

to a small range as opposed to an exact value. (3) Sometimes certain values can

be grouped to form a more abstract value. For example, the literal values “dark

blue”, “light blue” and “sky blue” might can be considered as a group of values

with semantics of “blue”. Instead of the basic equality relation between values, a

simple extension of relation between values could be by using algebraic operation.

Algebraic constraints [21, 43] in database relations are about the algebraic relation

between two columns in a database and are often used for query optimization.

The algebraic relation can be +,−,×, /. However these algebraic constraints are

limited to numerical attribute values and the mapping function can only be defined

using one of the four algebraic operators. As the example given above, on the one

hand, the number of days to process an order for shipping is not an direct algebraic

function relationship with the given products. On the other hand, the product

is not a numeric property. Thus algebraic operations between two columns are

limited. The reason is that numerical columns are more often indexed and queried

over as selective conditions in databases than strings. In contrast, I try to find a

general mapping function between the values of different properties, both numbers

and strings. Additionally, for the purpose of query optimization, they focus on pairs

149



www.manaraa.com

of columns with top ranked relational significance (based on either by workload

profiling or query feedback), i.e. the major parts in each of these pairs and the data

related to dependencies that is often queried over, rather than all possible pairs of

properties and all pairs of values existing in the data set.

FD can be expressed as a special form of multivalued dependency (MVD). The

formal definition of MVD is given below (chapter 7 of [87]). The multivalued de-

pendency α � β (which can be read as α multidetermines β) holds on R if, in any

legal relational table r that consists of attributes from R, for all pairs of tuples t1

and t2 in r such that t1[α] = t2[α] (the projection of two tuples on attributes α),

there exists tuples t3 and t4 in r such that

1. t1[α] = t2[α] = t3[α] = t4[α]

2. t3[β] = t1[β]

3. t3[R− β] = t2[R− β]

4. t4[β] = t2[β]

5. t4[R− β] = t1[R− β]

I give a brief explanation of this definition. The precondition is that two tuples

t1 and t2 agree on the set α of attributes from R (i.e. both have the same values

of these attributes) where α is the set of attributes of the LHS of this multivalued

dependency. Then according to the semantics of multivalued dependency, there

exists another pair of tuples t3 and t4 which satisfy the five conditions above at

the same time. The first condition is that all these four tuples agree on the set

α of attributes. Together the second and the third condition means tuple t3 has

the same values as t1 on attributes β while it also has values same as t2 on all the

other attributes. In other words, the tuple t3 can be seen as built by copying all

values from the tuple t2 and then replacing values of attributes β with corresponding

values from the tuple t1. Similarly, combining condition 4 and 5, the tuple t4 can

be seen as built by copying all values from the tuple t1 and then replacing values of

attributes β with corresponding values from the tuple t2. Overall, the semantics of

150



www.manaraa.com

these conditions is that if whenever we have two tuples (t1 and t2) of R that agree in

all the attributes of α, then we can swap their β components and get two new tuples

(t3 and t4) that are also in R. For example, relational table Students has attributes

name, address, phones, school and a MVD name � phones. If Students has the

two tuples:

name | addr | phones | school |

==========================================

tom | xyz | 123 | abc |

tom | xyz | 456 | def |

it must also have the same tuples with values of attribute phones swapped:

name | addr | phones | school |

==========================================

tom | xyz | 123 | def |

tom | xyz | 456 | abc |

In a functional dependency, each value on the LHS is precisely associated with a

single value on the RHS. Compared to FD, in a multivalued dependency, each value

on the LHS is precisely associated with multiple values. Note it does not mean that

each value on the LHS can be associated with only some one of values from the set

of multi-determined values on the RHS. Instead, it means that each value should

co-occur with every one multi-determined values in the relation. The more precise

the dependency is, the easier detecting abnormal data is. Therefore MVD is useful

in database design. But in this work the main goal of discovering dependencies

is to find abnormal values that are not expected. Given multiple expected values

through using MVD, it would be harder to determine which one is actual abnormal.

Further, if the concept similar to MVD is considered in this work, the complexity of

system will be greatly increased, especially considering the large scale of Semantic

Web data.

Data dependencies have recently shown promise for data quality management

in databases. Bohannon et al. [19] focuses on repairing inconsistencies based on

151



www.manaraa.com

standard FDs and inclusion dependencies (INDs), that is, to edit the instance via

minimal value modification such that the updated instance satisfies the constraints.

They proposed a repair framework that deals with both FDs and INDs. The cost

of an attribute-level modification in a repair is essentially the weight of the changed

tuple times the distance according to a similarity metric between the original value

of the attribute and its value in the repaired database.

A conditional functional dependency (CFD) [34, 25] is more expressive than a

FD because it can describe a dependency that only holds for a subset of the tuples

in a relation, i.e., those that satisfy some condition. Fan et al. [34] gave a theoretical

analysis and algorithms for computing implications and minimal cover of CFDs. In

contrast to traditional FDs that were developed mainly for schema design, CFDs aim

at capturing the consistency of data by enforcing bindings of semantically related

values. For static analysis of CFDs we investigate the consistency problem, which

is to determine whether or not there exists a nonempty database satisfying a given

set of CFDs, and the implication problem, which is to decide whether or not a

set of CFDs entails another CFD. They showed that while any set of transitional

FDs is trivially consistent, the consistency problem is NP-complete for CFDs. For

the implication analysis of CFDs, they provided an inference system analogous to

Armstrong’s axioms for FDs, and showed that the implication problem is coNP-

complete for CFDs in contrast to the linear-time complexity for their traditional

counterpart. The CFD discovery problem has high complexity; it is known to be

more complex than the implication problem, which is already coNP-complete [34].

Cong et al. [25], similar to Bohannon et al., focused on repairing data on two

central criteria for data quality: consistency and accuracy. Inconsistencies and errors

in a database often emerge as violations of integrity constraints. Given a dirty

database D, one needs automated methods to make it consistent, i.e., find a repair

D′ that satisfies the constraints and “minimally” differs from D. Equally important

is to ensure that the automatically-generated repair D0 is accurate, or makes sense,

i.e., D′ differs from the “correct” data within a predefined bound. This paper studies

effective methods for improving both data consistency and accuracy. Cong et al.

employed a class of CFDs to specify the consistency of the data, which are able to

152



www.manaraa.com

capture inconsistencies and errors beyond what their traditional counterparts can

catch. To improve the consistency of the data, they proposed two algorithms: one

for automatically computing a repair D0 that satisfies a given set of CFDs, and the

other for incrementally finding a repair in response to updates to a clean database.

However shown in the work, both problems are intractable.

In contrast to the above works using FDs, INDs or CFDs to repair databases,

we are trying to both automatically find fuzzy constraints/dependencies, i.e. those

that hold for most of the data, and report on exceptional data for applications. Our

work incorporates advantages from both FD and CFD, i.e. fast execution and the

ability to tolerate exceptions.

7.2 Value-clustered Graph Functional Dependency

RDF data also has various dependencies. But RDF data has a very different orga-

nization and FD cannot be directly applied because RDF data is not organized into

relations with a fixed set of attributes. We propose value-clustered graph functional

dependency (VGFD) based on the following thoughts. First, FD is formally defined

over one entire relation. However RDF data can be seen as extremely decomposed

tables where each table is a set of triples for a single property. Thus we must look

for dependencies that cross these extremely decomposed tables and extend the con-

cept of dependency from a single database relation to a whole data set. Second,

the correlation between values is trivially determined in a database of relational tu-

ples. But in RDF data, it is non-trivial to determine the correlation, especially for

multi-valued properties. For example, in DBpedia, the properties city and province

do not have cardinality restrictions, and thus instances can have multiple values

for each property. This makes sense, considering that some organizations can have

multiple places. Yet finding the correlation between the different values of city and

province becomes non-trivial. Third, traditionally value equality is used to deter-

mine FD. However, as discussed when introducing functional dependencies, this is

not appropriate for real world, distributed data.

153



www.manaraa.com

Following the thoughts above, I give the formal supporting definitions of VGFD

as follows.

Definition 18. Given an RDF graph G = (I, L,R,E), a Composite Property r◦ in

graph G is r1 ◦ r2...rn, where ri ∈ R or r−i ∈ R, and ∃I0, ..., In, ⟨I0, r1, I1, ..., rn, In⟩
is a Path in G. Let R◦ be all possible Composite Properties. Given r◦ ∈ R◦,

Triple(r◦, G) = {⟨I0, r◦, In⟩|⟨I0, r1, I1, r2, I2, ..., rn, In⟩ is a Path in G}. Length(r◦) =
n. ∀r ∈ R, r ∈ R◦ and Length(r) = 1.

Definition 19. Given an RDF graph G = (I, L,R,E), a Conjunctive Property r+

in graph G is a set {r1, r2, ..., rn} (written r1+ r2+ ...+ rn), where ∀ri ∈ r+, ri ∈ R◦

and ∃I ′, s.t. ∀1 ≤ i ≤ n, Ii ∈ I, ⟨I ′, ri, Ii⟩ ∈ Triple(ri, G). Let R+ be all possible

Conjunctive Properties. Size(r+) =
∑

ri∈r+ Length(ri).

A Composite Property is a sequence of edges on a Path. The subject and object

of a Composite Property are the first and last objects on the Paths consisting of this

sequence of edges. Every original property in the data is a special case of Composite

Property whose length is one. A Conjunctive Property groups a set of Composite

Properties that have a common subject I ′. Every Composite Property can be seen

as a special form of a Conjunctive Property which has a single Composite Property

in the set. Thus, each original r ∈ R is also r ∈ R◦ and each r◦ ∈ R◦ is also

r◦ ∈ R+.

Definition 20. Given an RDF graph G = (I, L,R,E), i ∈ I, and r◦ ∈ R◦, the

value function V ◦ is defined as V ◦(i, r◦) = {i′|∃⟨i, r◦, i′⟩ ∈ Triple(r◦, G)}.

Definition 21. Given an RDF graph G = (I, L,R,E), i ∈ I, and r+ ∈ R+, the

value function V + is defined as V +(i, r+) is a tuple < V ◦(i, r1), ..., V
◦(i, r1) > where

∀j, rj ∈ R+.

Given a Composite Property and a given subject, value function V ◦ returns the

set of objects connected with this subject through this Composite Property. Given

a Conjunctive Property and a given subject, the value function V + returns a tuple

of sets of objects connected with this subject through this Conjunctive Property.

154



www.manaraa.com

To illustrate these definitions, Fig. 7.1 gives an RDF graph showing the examples

of these definitions. An example Path (Definition 2) is ⟨DarwicheP97, has-date,

1998-04-03, has-year, 1998⟩. Because of this Path, an example of Composite Prop-

erty can be defined as has-date ◦ has-year and its length is two. Then an

example of Conjunctive Property can be article-of -journal + has-volume, be-

cause it is composed of two composite properties of length one: article-of -journal

and has-volume. Given Composite Property has-date ◦ has-year and instance

DarwicheP97, the set of values returned by value function of V ◦(DarwicheP97,

has-date ◦ has-year) is set consisting of single value 1998. Given Conjunctive

Property article-of -journal + has-volume and instance DarwicheP97, the tu-

ple of values returned by value function of V ◦(DarwicheP97, article-of -journal +

has-volume is < {journal-297}, {6} >.

Definition 22. Given an RDF graph G = (I, L,R,E), r◦ ∈ R◦ and x ∈ I ∪ L, the

cluster function is defined as

C(x, r◦) =

{
the equivalence class of x, when x ∈ I

the cluster of values of property r◦ containing x, when x ∈ L

Definition 23. Given i, j ∈ I and r◦ ∈ R◦, Dependency Equality (DE) between

i and j on r◦ is: V ◦(i, r◦)
.
= V ◦(j, r◦) ⇐⇒ (∀x ∈ V ◦(i, r◦) ⇐⇒ ∃y ∈

V ◦(j, r◦), C(x) = C(y)). Given i, j ∈ I and r+ ∈ R+, Dependency Equality be-

tween i and j on r+ is: V +(i, r+)
.
= V +(j, r+) ⇐⇒ ∀rk ∈ r+, V ◦(i, rk)

.
= V ◦(j, rk).

Definition 24. A value-clustered graph functional dependency (VGFD) s in graph

G is X → Y , where X ∈ R+, Y ∈ R◦ and ∀i, j ∈ I, if V +(i,X)
.
= V +(j,X) then

V ◦(i, Y )
.
= V ◦(j, Y ).

These last definitions complete our definitions of VGFDs. Definition 22 defines

the cluster function which returns the cluster that groups a set of property values

with close semantics. As I discussed in section 7.1, when considering traditional func-

tional dependency, most approaches uses basic equality to compare object identifier

or actual values. In that mechanism, some similar values are considered different so

that a meaningful dependency about these values is missed. Therefore in this work,

155



www.manaraa.com

 

has-year 
has-date 

article-of-journal 

DarwicheP97 

1998-04-03 

1998 
journal-297 

has-volume 
6 

Figure 7.1: An RDF graph example illustrating the definitions related to VGFD.

has-year
has-date

article-of- journal

Paper_1

Date_1-

1998
journal-297

has- volume
6

Figure 7.2: Another RDF graph example illustrating the patterns to be discovered
by VGFDs.

I considered typical situations where values can be similar enough to still generate

a dependency. Specifically, the cluster function 1) returns the sameAs transitive

closure for an instance which is involved in some sameAs triples, 2) returns one of

the clusters for datatype values of given property and this cluster contains given

datatype value, otherwise 3) returns the value itself. The transitive closure of rela-

tion R is as follows, intuitively constructing it step by step. To start, define R0 = R

and, for i > 0, Ri = Ri−1 ∪ {(s1, s3)|∃s2 where (s1, s2) ∈ Ri−1 and (s2, s3) ∈ Ri−1}.
Be specific to our problem, for example, a transitive closure for two sameAs triples

< a sameAs b > and < b sameAs c > is adding a new triple < a sameAs c >

into these set of triples. Meanwhile, the instances a, b and c forms a equivalence

class. Note, when an instance is not involved in any sameAs relation, based on the

above notation R0 = R, this instance itself is a equivalence class. Using this cluster

156



www.manaraa.com

function, Definition 23 defines Dependency Equality (DE) among the values of a

Conjunctive Property or Composite Property. When different values of a property

satisfy Dependency Equality, it means that these values are treated as the same (in

semantics) for considering VGFD. Definition 24 states the pre-condition of a VGFD

that given any instance, if object values of a given Conjunctive Property for this in-

stance satisfy Dependency Equality, then there is a DE among values of a Composite

Property for this instance. Then there is a candidate VGFD whose left-hand side

(LHS) is this Composite Property and right-hand side is this Conjunctive Property.

I will take Fig. 7.1 and Fig. 7.2 together as a example. In this example, all instances

(two instances DarwicheP97 and Paper1) have the same values (i.e. satisfying DE)

of Conjunctive Property article-of -journal + has-volume, and they also have the

same values (i.e. satisfying DE) of Composite Property has-date ◦ has-year. Then

there is a candidate VGFD whose LHS is this Conjunctive Property and RHS is this

Composite Property: article-of -journal + has-volume→ has-date ◦ has− year.

Due to the union rule of Armstrong’s axioms (discussed when introducing func-

tional dependencies) used to infer all the functional dependencies, if α → β and

α→ γ hold, then α→ βγ holds. Therefore, it is enough to define the VGFD whose

right-hand side (RHS) is each single element of a set of Composite Properties, in-

stead of a Conjunctive Property, i.e. the whole set of Composite Properties.

7.3 System Overview

Following the definition of VGFD, I developed an algorithm to discover VGFDs

[101]. Because the VGFDs to be discovered are used to detect errors in original

data, the dependencies that have single named ontology properties as RHS are

more important. Currently this work only detects VGFDs whose RHS Composite

Property is with length one, i.e. all named properties. Fig. 7.3 and Algorithm 5

shows the work flow of the system.

In the approach, there are two main parts: the VGFD search (Algorithm 4 and

will be introduced in the next section) and value clustering (Algorithm 5 will be

157



www.manaraa.com

Semantic Web data

Abnormal 

Semantic Web data

Clustering property 

values

Generate a level of 

candidate VGFDs

Runtime pruning

Compute VGFD

Stop?
No

Detect Abnormal Data

Figure 7.3: The work flow of the system based on VGFD.

introduced in the section after) which is used to group values in similar semantics

for considering VGFDs. Before the process of discovering VGFDs, the system first

cluster property values into sets with similar semantics for considering dependencies

on these values.

The main process of this clustering is as follows. The system initializes a set C

which is for clusters of property values (line 1). There are several steps to cluster

values of each property. First it gets all values for a given property (line 3). The pre-

clustering step groups values into coarse grained sets using light weight computation

(line 4 to be discussed in section 7.5.1). Based on these pre-clustered groups, the

system tries to group values into finer-grained sets and records these resulting sets

(line 5 and 6 described in section 7.5.2).

158



www.manaraa.com

Algorithm 4 Cluster Property V alues(G, γ), G = (I, L,R,E) is a graph; γ is the
threshold for pre-clustering.

1: C ← ∅
2: for each r ∈ R do
3: V ← {o|∃ < s, p, o >∈ E}
4: groups← Preclustering(V, γ)
5: Cr ← Optimal Kmeans(V, groups)
6: C ← C∪ < r,Cr >
7: return C

Algorithm 5 Search V GFDs(G,C, α, β), G = (I, L,R,E) is a graph; C is set of
property/clusters pairs, α is the confidence threshold for a VGFD; β is the sampling
size.

1: S ← ∅
2: i = 0
3: Li ← ∅
4: repeat
5: i = i+ 1
6: Li ← Generate Level with Static Pruning(Li−1, E)
7: for each s ∈ Li do
8: if Runtime Pruning(s, α, β, E, C) = FALSE then
9: if (M ← Compute V GFD(s, α, E,C)) ̸= ∅ then
10: S ← S∪ < s,M > //M is the set of value mappings of s.
11: until Li = ∅ or i >= DEPTH LIMIT
12: return S

Given n named properties in data set, there can be (2n)k composite properties

of length k (considering inverse properties). Then there can be 2(2n)
k
Conjunctive

Properties, since we can pick any subset of Composite Properties to compose a Con-

junctive Property. Therefore, in the worst case, the number of VGFDs, which has a

Conjunctive Property on LHS and a Composite Property on RHS, is O(2(2n)
k ·(2n)k),

i.e., super-exponential. In database theory, the closure of a set F of functional de-

pendencies is the set of all functional dependencies logically implied by F . When

the closures of two sets of functional dependencies are the same, these two sets of

functional dependencies are equivalent and each is called the cover of another other.

Therefore to efficiently discover a minimum set of VGFDs which is a cover of the

159



www.manaraa.com

whole set of VGFDs, my approach essentially is computed level-wise. As an example

shown in Fig. 7.4, each level Li consists of VGFDs with LHS of size i (Definition

19). The computation of VGFDs with smaller sets of LHS properties can be used

when computing children VGFDs that have a superset of those LHS properties. A

similar level-wise search was proposed for the Tane algorithm [49] to discover FDs

in a relational table in database. Each node on a certain level on the containment

lattice in Tane specified a group of attributes for considering a FD. The group of

attributes is only considered as a set without ordering and ways of combination.

Thus a set of attributes will be a unique node on that lattice. However the same set

of properties can be grouped into different nodes in my level searching process, be-

cause there are multiple ways of combine them using the composite and conjunctive

operators. Thus, the nodes in my level searching process are finer grained which

leads to more opportunities for pruning. Algorithm 5 initializes a set S for record-

ing VGFDs (associated with their value mappings) (line 1), then starts with level 0

(line 2 and 3). On each new level (line 5), it first generates possible VGFDs on this

level based on the results of previous levels and it also eliminates many potential

VGFDs from further consideration based on some easily computed heuristics (line

6, discussed in Section 7.4.1). Then, for each new generated candidate VGFD on

this level, runtime pruning (line 8, discussed in Section 7.4.3) is conducted in order

to avoid expensive computation for false VGFDs. If the candidate VGFD has not

been eliminated by the previous steps, a detailed computation (line 9, discussed in

Section 7.4.2) is conducted. This computation produces the value mappings between

the LHS property and RHS property of a VGFD and the pair of the VGFD and

its value mappings is recorded for return (line 10). The mappings can be used to

detect erroneous triples which do not have a mapped value. The whole process can

terminate at a predetermined level, or after all levels, although the latter is usually

unnecessary and unrealistic (line 11).

Based on clusters and VGFDs, abnormal data can be in two types: one is far

away from other clusters and the other is a violation of VGFDs. Specifically, in

this work, a triple is reported as an outlier if its value is the only element of some

cluster whose distance to the nearest cluster centroid is above twice of the average

160



www.manaraa.com

distances between all clusters for this property. A triple is reported as abnormal due

to violation of VGFDs only when its value conflicts with a value mapping determined

by some VGFD and this value mapping is confirmed by other triple usages more

than twice.

7.4 Discovering VGFDs

A naive process of discovering VGFDs is to combine all properties in all possible

ways on both LHS and RHS of a candidate VGFD and then check if all values

of LHS property can functionally determine values of RHS property. That would

be too inefficient and actually impractical. Therefore it is necessary to prune out

those unlikely combination of properties with minimum computation. I devised a

static pruning to rule out some candidate VGFDs with static information (section

7.4.1) and a runtime pruning process to further rule out some candidate VGFDs

by checking sample data of this VGFD (section 7.4.3). When actual computing a

VGFD, I will discuss the most important aspect in it that is to handle multi-valued

properties (section 7.4.2).

7.4.1 Heuristics for Static Pruning

I first define the discriminability for a property as the number of distinct object

values divided by the size of the property extension. Then, the static pruning

heuristics used to eliminate potential VGFDs from further consideration are:

1. insufficient subject overlap between the LHS property and the RHS property,

2. the LHS property or RHS property has too high a discriminability,

3. the discriminability of the LHS property is less than that of the RHS property.

The information for rule 1 can be acquired from an ontology (e.g. using domain

and range information) or a simple relational join on data. Here insufficient overlap

means too few common subjects, e.g. less than 20. Because VGFDs essentially are

161



www.manaraa.com

based on patterns during co-occurrences of properties for some instances, few co-

occurrences cannot reveal enough information to discover patterns. Co-occurrence

is another way of saying of subject overlap among properties.

As defined above, the maximum value of a discriminability is one only when

every value of this property usage is different. In rule 2, if the discriminability of

a property is close to one, e.g. 0.95 which means that in 95% property usages,

the values are different, then the property functions like a superkey in a database,

i.e. each record has a unique value for the superkey. Since such keys can identify

an individual, they are not very useful for detecting abnormal data by checking its

value patterns in usages.

As defined, a VGFD is an extension of FD in RDF graph and so it still follows

the idea that values of the LHS precisely determine values of RHS. In other words,

there is a functional mapping between LHS values and RHS values. In rule 3, if

there is a mapping between two properties where the discriminability of the LHS

property is less than that of the RHS property, then some values of the property

with smaller discriminability must be mapped to different values on the RHS, which

would not be a functional mapping. In order to apply these heuristics, we define

the additional observations:

1. The discriminability of a Composite Property is never no greater than that of

each property involved.

2. The discriminability of a Conjunctive Property is never no less than that of

each property involved.

3. A Conjunctive Property cannot be based on two properties that have few

common subjects.

4. A Composite Property cannot be based on two properties that have few com-

mon objects and subjects.

5. All children of a true VGFD on the level-wise search graph are also true

VGFDs, but are not minimal.

162



www.manaraa.com

A+C B A○C B A+D B A○D B A+B C A○B C A+D C A○D C A+B D A○B D A○C DA+C D

(A○B)+D C (A○B)○D C (A○D)+B C (A○D)+B C Level 3

Level 1

Level 2

Level 0

A B A C A D B A B C B D … …

… …

Figure 7.4: An example of level-wise discovering process. We suppose that (1)
property A and B have few common subjects, (2) the discriminability of B is less
than that of C and (3) D has a high discriminability.

A+C B A○C B A+D B A○D B A+B C A○B C A+D C A○D C A+B D A○B D A○C DA+C D

(A○B)+D C (A○B)○D C (A○D)+B C (A○D)+B C Level 3

Level 1

Level 2

Level 0

A B A C A D B A B C B D … …

… …

1 3 2 3

Figure 7.5: Some of the candidate VGFDs on the first level are pruned out.

For example, given a Composite Property A ◦B, its values all come from the values

of B and its extension is a subset of the Cartesian product between objects of A

and subjects of B, then its discriminability, i.e. the distinct values divided by the

usages, should be no greater than that of either component. A similar explanation

applies for Conjunctive Properties in observation 2. An extension of the observation

4 is that a Conjunctive Property cannot be followed by another property to compose

a Composite Property. Take (A+B) ◦ C as an example property. Since the values

of property A+B are tuples as opposed to the normal instances in RDF data that

can be the subjects of other properties (e.g. C).

Fig.7.4 is an example showing how these heuristics are useful in the level-wise

searching. Each edge is from a parent VGFD to a child VGFD and the LHS of child

VGFD is a superset of the LHS of parent VGFD. Two connected VGFDs have the

same RHS. The VGFDs pruned by the above heuristics are in dotted boxes and

dotted lines connect parent VGFD and those child VGFDs that are pruned due to

the same heuristics as the parent VGFD. For this example, I make assumptions

163



www.manaraa.com

A+C B A○C B A+D B A○D B A+B C A○B C A+D C A○D C A+B D A○B D A○C DA+C D

(A○B)+D C (A○B)○D C (A○D)+B C (A○D)+B C Level 3

Level 1

Level 2

Level 0

A B A C A D B A B C B D … …

… …

1 3 2 3

1 3

Figure 7.6: Some of the candidate VGFDs on the second level are pruned out due
to the reason as their parents.

A+C B A○C B A+D B A○D B A+B C A○B C A+D C A○D C A+B D A○B D A○C DA+C D

(A○B)+D C (A○B)○D C (A○D)+B C (A○D)+B C Level 3

Level 1

Level 2

Level 0

A B A C A D B A B C B D … …

… …

1 3 2 3

1 3

1 3 2

3 2 1

Figure 7.7: Other candidate VGFDs are pruned out.

typical of real RDF data. For instance, in DBpedia less than 2% of all possible

pairs of properties share sufficient common instances. So following our heuristics,

four VGFDs on level 1 are pruned (see Figure 7.5, the numbers in circle are defined

heuristics above): A → B is due to heuristic rule 1, B → C is due to rule 3 and

the other two are due to rule 2. Then the children of A → B and A → D are

pruned due to the same reason as their parents (see Figure 7.6). Shown in Figure

7.7 (where number in box is the defined observation above), A+B → C on level 2

and (A ◦ D) + B → C on level 3 are pruned due to the first assumption plus the

observation 2. Finally, A+D → C on level 2 and (A ◦ B) +D → C on level 3 are

pruned due to the observation 1 and heuristic rule 2. From this example, we can

see simple conditions can reduce the level-wise search space greatly based on these

heuristics.

164



www.manaraa.com

Table 7.1: The left table is the triple list. The right table is mapping count.
deptNo deptName

subject object subject object
A 1 A CS
A 2 A EE
B 1 B EE
C 2 C CS
D 2 D EE

Candidate Value Mapping Count
1→ EE 2
2→ EE 2
2→ CS 2
1→ CS 1

7.4.2 Computing VGFDs

If two properties are considered as the LHS and the RHS of a VGFD, it is required

to investigate whether all these value pairs show correlations. In the case of both

properties are single valued properties, we can create a table and put the value pairs

into tuples and simply scan the table to see if every LHS value is only associated

with single RHS value. However the fundamental difference between VGFD and FD

when computing VGFD is that we consider multi-valued properties. When finding

FDs in databases, the multi-valued attributes either are not considered (if they

are not in the same relation), or the correlation of their values is given by having

separate tuples for each value. RDF frequently has multi-valued properties without

any explicit correlation of values, e.g. in DBpedia, more than 60% properties are

multi-valued. Therefore I devised the following general approach dealing with both

single property values and multi-valued properties. When computing a VGFD, we

try to find a functional mapping from each LHS value to an RHS value such that

this mapping maximizes the number of correlations. We consider any two values

for a pair of multi-valued properties that share a subject to be a possible mapping.

Then we greedily select the LHS value that has the most such mappings and remove

all other possible mappings for this LHS value. If multiple RHS values are tied for

the largest number of mappings, then we pick the one that appears in the fewest

mappings so far. Consider Table 7.1 which analyzes the dependency deptNo →
deptName. The triples are given to the left and each possible value mapping and

its maximal possible count are listed in descending order to the right. The maximal

165



www.manaraa.com

count of 1→ EE is 2, because these two values co-occur for instances A and B once

for each. We first greedily choose mapping 1→ EE, because it has the largest count

among all mappings for depNo = 1. After this selection, the mapping 1 → CS is

removed since deptNo = 1 has been mapped. Then for deptNo = 2, to maximize

the number of distinct values being matched on both sides, we choose (2, CS) since

CS has been mapped to by fewer LHS values than EE. The confidence in a VGFD

depends on how often the data agree with it, i.e., the total matches divided by the

sum of the LHS’s extension, e.g. the VGFD above has the confidence of 4/5 =

0.8. In this work, we set the confidence threshold α = 0.9 to ensure that patterns

are significant, while allowing for some variation due to noise, input errors, and

exceptions.

Note the basic equality used here is a special case of cluster-based Dependency

Equality. In the example, we assumed EE and CS were in different clusters. For

example, if CS and EE are clustered together into a group of similar semantics

(noted as EECS), then the mappings will be 1→ EECS and 2→ EECS.

7.4.3 Run-time Pruning

As discussed earlier, since in the worst case, there are 2(2n)
k · (2n)k possible VGFDs,

the expensive full scan of value pairs must occur many times. So we propose to use

mutual information (MI) computed over sampled value pairs for estimating the de-

gree of dependency. In Algorithm 6, given a candidate VGFD s X → Y , the system

starts with randomly selecting a specified percentage β of the instances. In line 2,

for each instance i, the system randomly picks a pair of values from V +(i,X) and

V ◦(i, Y ). Distribution() also applies the clusters CX and CY and returns these pairs

in lieu of the actual values. In information theory, a MI IXY of two random variables

X and Y is formally defined as IXY =
∑

i∈O(X)

∑
j∈O(Y ) pXi∧Yj

log (pXi∧Yj
/pXi

pYj
),

where pXi
, pYj

are the marginal probability distribution functions of X and Y ,

respectively, and pXi,Yj
is the joint probability distribution function of X and Y .

Intuitively, MI measures how much knowing one of these variables reduces the un-

certainty about the other. Furthermore, the entropy coefficient (EC), using MI,

166



www.manaraa.com

measures the percentage reduction in uncertainty in predicting the dependent vari-

able based on knowledge of the independent variable. When it is zero, the inde-

pendent variable is of no help in predicting the dependent variable; and when it is

one, there is a full dependency. The EC is directional and EC(X|Y ) for predicting

the variable X with respect to variable Y is defined as IXY /EY , where EY is the

entropy of variable Y , formally
∑

Yj
pYj

log 1/pYj
= −

∑
Yj
pYj

log pYj
. Because IXY

also can be expressed as EX + EY − EXY which has a easier form to compute, I

choose this form to compute IXY .

Algorithm 6 Runtime Pruning(s, α, β, E,C), s is a candidate VGFD X → Y ; α
is the confidence threshold for a VGFD; β is the sampling size as a percentage; E
is a set of triples. C is a set of cluster sets for each property.

1: I ← Sampling Subjects(s, β, E) //Sampled subjects shared by
the LHS and RHS.

2: {(Xi, Yi)} ← Distribution(s, I, E, C) //A list of value pairs where each pair
consists of two single sampled values of LHS and RHS for the same subject.

3: EX = −
∑

distinct x∈{Xi}
|{Xi|Xi=x}|

|{Xi}| · log |{Xi|Xi=x}|
|{Xi}|

4: EY = −
∑

distinct y∈{Yi}
|{Yi|Yi=y}|

|{Yi}| · log |{Yi|Yk=i}|
|{Yi}|

5: EXY = −
∑

distinct (x,y)∈{(Xi,Yi)}
|{(Xi,Yi)|Xi=x∧Yi=y}|

|{(Xi,Yi)}| · log |{(Xi,Yi)|Xi=x∧Yi=y}|
|{(Xi,Yi)}|

6: if (EX + EY − EXY )/EX < α− 0.2 then
7: return TRUE
8: return FALSE

Paradies et al. [78] also used entropy to estimate the dependency between two

columns in databases. Since they want to determine attribute pairs that can be

estimated with high certainty, i.e. focusing on precision of the positives, they need a

complex statistical estimator. In contrast, my aim is a fast filter that is good enough

to remove most negatives, i.e. independent pairs, thus a statistical estimator is not

necessary. I can avoid missing positives by setting a low enough threshold. In my

experiments, the difference between EC for a 20% sample and EC of full data is

less than 0.15 on average and the estimated values typically have higher ECs. For

example, it is very rare that a VGFD estimated lower than 0.7 has an actual value

above 0.9. Therefore, a threshold of 0.2 less than α (line 6) is a reasonable lower

bound for filtering out independent pairs.

167



www.manaraa.com

It is worthwhile to consider the relationship of Perplexity to this algorithm. The

perplexity of a discrete probability distribution p is defined as 2H(p) = 2−
∑

x p(x) log2 p(x)

where H(p) is the entropy of the distribution and x ranges over events. The perplex-

ity measures the uncertainty of a probability model. For example, given a model of

a fair k-sided die (a uniform distribution over k discrete events), its perplexity is k.

The larger the perplexity value, the more uncertain a probability model is. Thus

it can be used to compare two probability models by checking if they have similar

uncertainties, i.e. the perplexities. However, in my work, a mechanism is needed

to compare how likely it is that the value distribution of two probability models

are correlated. In other words, two probability models that have a similar level of

uncertainty but are not correlated need to be ruled out. Therefore perplexity alone

is insufficient for our problem.

7.5 Clustering Property Values

As introduced in the beginning of Section 7, it is necessary to cluster property val-

ues in order to discover dependencies with deeper semantics that allow for rounding

errors, measurement errors, and distributions of values. For object property val-

ues, clustering groups all identifiers that stand for the same real world object by

computing the transitive closure of sameAs. Clustering of literal values of datatype

properties is more complete and will be discussed in the rest of this section. This is

used to determine Dependency Equality (Definition 23) between two objects.

7.5.1 Pre-clustering

The pre-clustering process is a light-weight computation that provides two benefits

for finer clustering later: it finds the minimum number of clusters and reserves

expensive distance calculations for pairs of points within the same pre-cluster. Since

the pre-clustering is used for VGFD discovery, there are three thoughts. First, the

values to be clustered are from various properties and have very different features.

So the clustering process needs to be generic in two aspects: (1) a pair-wise distance

168



www.manaraa.com

metric that is more general than linear ordering for different types of values and

multiple feature dimensions, and (2) suitable for the most common distribution

in real world, i.e. the normal distribution. Second, we prefer a comparatively

larger number of clusters where elements are really close (if not, they may not be

clustered). The reason is that the clusters will be used as class types for detecting

dependencies. Larger values of k generate finer-grained class types, which in turn

allow us to generate more precise VGFDs, albeit at the risk of bluring boundaries

between classes and making it harder to discover some dependencies. This point

also makes our approach different from many other pre-clustering approaches, e.g.

[69], because their pre-clustering does not create true partitions of the values and

their rigid clustering later could merge these groups into fewer clusters.

Based on the above thoughts, specifically, given a list of values, the pre-clustering

process first selects a value that is closest to the center (I choose the mean for numeric

values and discuss strings in the next paragraph), and then moves it from the list to

be the centroid of a new group. Second, for each value on the list, if the distance to

this centroid is within the threshold (I use the standard deviation), it will be moved

from the list to the new group. Finally, the above process is repeated if the list is

not empty. Thus the process generally finds the cluster around the original center

first, and then the clusters further away from the center. This is much better than

random selection, because if an outlier is selected, then most instances remain on

the list for clustering after this round of computation.

To compute the center and distance of string values, we compute the weight of

each token in a string according to its frequency in values for the property. Then we

pick the string that has the largest sum of weights divided by the number of tokens

in it as the center. The distance between two strings is the sum of weights of the

different tokens in them. The intuition is that by taking these strings as a class, the

most representative one is the one with the most common words. For example, the

property color in DBpedia has values “light green”, “lime green”, etc. Then, the

representative of these two strings is the common word “green”. For “light green”,

the distance to ”lime green” will be less than that to “light red”, since ’‘red” and

“green” are more common and have larger weights.

169



www.manaraa.com

7.5.2 Optimal k-Means Clustering

There are several popular clustering methods, e.g. k-Means, Greedy Agglomerative

Clustering, etc. However most of them need a parameter for the number of resulting

clusters. To automatically find the most natural/best clusters, we designed the

following unsupervised method of finding optimal clusters.

Algorithm 7 Optimal kMeans(L, groups), L is a set of literal values; groups is a
set of pre-clustered groups of L.

1: k = |groups|
2: oldGap = Gap Statistic(groups)
3: tmpC ← groups
4: repeat
5: k = k + 1, C ← tmpC, tmpC ← ∅ //tmpC is the set of k clusters
6: for each i ≤ k do
7: Init(mi), ci ← ci ∪ {mi}, tmpC ← tmpC ∪ {ci} //mi is the center of each

cluster
8: repeat
9: for each x ∈ L do
10: i = argminiDistance(x,mi)
11: ci ← ci ∪ {x}
12: for each i ≤ k do
13: mi = Mean(ci)
14: until ∀i ≤ k,mi converges
15: newGap = Gap Statistic(tmpC)
16: until newGap < oldGap
17: return C

The approach is inspired by the gap statistic [92] which is used to cluster numeric

values with a gradually increasingly number of clusters. The idea is that when

we increase k to above the optimum, e.g. adding a cluster center in the middle

of an already ideal cluster, the pooled within-cluster sum of squares around the

cluster mean decreases more slowly than its expected rate. Thus the gap between

the expectation and actual improvement over different k will have a shape with

an inflexion which indicates the best k. My approach improves upon this idea by

170



www.manaraa.com

leveraging preclusters in three ways: the algorithm starts at the number of pre-

clusters instead of 1; in each round of k-Means, the initial centroids are selected

according to pre-clusters; and the distance computation is only made among points

within the same pre-cluster as opposed to between any pair.

The Optimal kMeans algorithm is presented as Algorithm 7. At first, k is

set to the number of pre-clusters. At each iteration, the algorithm increments k

and selects k random estimated centroids mi, each of which starts a new cluster

ci. The Init() function selects the centroids from the pre-clusters in proportion to

their sizes, i.e. each pre-cluster group has k ∗ |group|/|all values| random selected

centroids. In each inner loop (line 8-13), every value is labeled as a member of the

cluster whose centroid has the shortest distance to this instance among all centroids

that are within the same pre-cluster as that value (line 10). Then each centroid

is recomputed based on the cheap distance metric used in pre-clustering until the

centroid does not change. Since the clustering is used to detect data in which string

values might be abnormal due to typos or data conversion errors, I use edit distance

as the distance metric for string values as opposed to the above pre-clustering. After

each round of modified k-Means clustering, the algorithm computes the difference

on Gap(k) and stops the process if it is an inflexion point.

7.6 Experiments

In the experiments, I selected the SWRC, DBpedia and RKB1 [38] data sets. All

of them are widely used subsets of Linked Data that cover different domains. Ex-

periments were conducted on a Sun workstation with 8 Xeon 2.93G cores and 6G

memory. I observed that there are few dependencies with an LHS size larger than

four and that such dependencies tend to have less plausible meanings. For this rea-

son, I set the maximal size of a VGFD to four in the experiments. As I discussed at

the end of Chapter 2, there are no existing systems with functions closely similar to

1http://www.rkbexplorer.com/data/

171



www.manaraa.com

Table 7.2: System overall performance on SWRC, DBpedia and RKB data sets.
SWRC DBpedia RKB

Number of Triples (M) / Properties 0.07 / 112 10 / 1114 38 / 54
Discovered VGFDs on Level 1 12 228 6
Discovered VGFDs on Level 2 37 304 3
Discovered VGFDs on Level 3 2 126 0
Discovered VGFDs on Level 4 0 53 0

Total discovered VGFDs 51 721 9
Time for Clustering (s) 18 114 396
Time for Level 1 (s) 11 172 67
Time for Level 2 (s) 20 246 44
Time for Level 3 (s) 4 108 0
Time for Level 4 (s) 1 47 0

Total Time (s) 54 687 507
Reported Abnormal Triples 75 2868 227

this system. So I did not compare this system with others from a whole system per-

spective. However, to validate the system, I compared each of system sub-function

with other algorithms that provide the same function.

In the first experiment, I compared the overall performance of the system on

three data sets. The sampling size β used in runtime pruning is 20%. In Table 7.2,

it can be seen that the running time appears to be more heavily influenced by the

number of properties than the data set size. Note that RKB has more triples but

fewer properties than DBpedia, and thus has more triples per property. This leads

to a longer clustering time, but thanks to static and runtime pruning, the total time

to find VGFDs is less.

Table 7.3 gives some VGFDs from the three data sets and their short de-

scriptions. I listed them into three groups: VGFDs with size 1 and size 2, and

VGFDs based on clusters. For example, the last VGFD based on clusters means

that a school’s type determines the range of upper age, because we have the clus-

ters shown in Table 7.4. In DBpedia, among 200 samples out of 2868 abnor-

mal triples, 173 of them (86.5%) are confirmed to be true errors in the original

data. The correctness of 10 of the remaining triples was difficult to judge. SWRC

172



www.manaraa.com

Table 7.3: Some VGFDs from the three data sets. The first and second group of
VGFDs are of size 1 and 2 respectively. The third group is a set of VGFDs with
clustered values.
VGFD and its Description
genus→family
Organisms in the same genus also have the same family.
writer→genre
A work’s writer determines the work’s genre.
teamOwner→chairman
The teams with the same owner also have the same chairman.
composer→mediaType
The works by the same composer have the same media type.
militaryRank→title
The people of the same military rank also have the same title.
location→nearestCity
The things at the same location have the same nearest city.
topic→primaryTopic
The papers with the same topic have the same primary topic.

manufacturer+oilSystem →compressionRatio
The manufacturer and oil system determine the engine’s compression ratio.
publisher ◦ country →language
The publisher’s country determines the language of that published work.
article-of-journal+has-volume→has date
A journal’s volume number determines the date of publications in this journal.

faculty→budget
The size of the faculty determines the budget range.
militaryRank→salary
The military rank determines the range of salary.
occupation→salary
The occupation determines the range of salary.
type→upperAge
A school’s type determines the range of upper age.

173



www.manaraa.com

School Type Upper Age
Elementary School {11, 12}
Secondary School {13, 14}

High School {18, 19}

Table 7.4: Correlation between values of school type and clusters of property upper
age.

and RKB have 51% and 62% precision respectively. I believe the lower preci-

sion for SWRC is because it has a higher initial data quality and its properties

have a much smaller set of possible values than those of DBpedia. I list a num-

ber of confirmed erroneous triples in Table 7.5, where r, o, i, p, s are prefixes

for http://www.dbpedia.org/resource/, http://www.dbpedia.org/ontology/,

http://acm.rkbexplorer.com/id/, http://www.aktors.org/ontology/portal/

and http://data.semanticweb.org/. These errors are listed in two groups: the

first is outliers and the other is VGFD violations. For example, the first triple in

the first group is reported as an outlier after automatic clustering. The first triple

in the second group violates the VGFD that a journal’s volume number determines

the date of publications in this journal, because the triple’s subject is an article

published in certain issue of a journal while its publish date is not in the cluster of

values for the articles published in the same issue of journal.

Next, to check the impact of our pruning algorithms, I performed an ablation

study using DBpedia that removes these steps. Table 7.6 shows that using static

and runtime pruning respectively saves over 62% and 55% of time compared to

using neither. Because they utilize different characteristics, using them together

saves 85% over neither. When not pruning, the few additional VGFDs discovered

lead to fewer abnormal triples than those discovered with pruning (on average 2.2

per VGFD vs. 3.97 per VGFD). Thus the pruning techniques not only save time

but do not affect the abnormality detection much.

Besides pruning, I also checked the impact of our pre-clustering. Because my

approach is based on a generic pair-wise distance, I wanted to compare it with a

simpler one based on the linear ordering of values where the distance is just the

174



www.manaraa.com

Table 7.5: Some confirmed erroneous triples in the three data sets. The first group
is outliers and the second group is VGFD violations.
1 <r:Shanghai Jiao Tong University, o:university/undergrad, 194323445>
2 <r:Harrow College, o:School/upperAge, 2009.0>
3 <r:Melbourne Grammar School, o:School/ranking, 2006.0>
4 <r:Dembela, o:Place/coordinates, coord|N|W>
5 <r:Hutt Valley High School, o:EducationalInstitution/principal, r:2008>
6 <r:Wake Island, o:Island/country, r:United States Air Force>
7 <r:Albuquerque Plaza, o:Building/floorCount, 2221>

8 <i:journals/jair/DarwicheP97, p:has-date, 1998>
9 <r:Wiktionary, o:Work/language, r:History and development>
10 <r:varedo, o:City/province, r:Province of Milan>
11 <i:796511, p:has-date, to-10-01>
12 <r:Google Maps, o:Work/language, r:Coverage details of Google Maps>
13 <s:person/bastian-quilitz, s:ns/swc/ontology#affiliation, research assistant>
14 <s:person/ulf-leser, s:ns/swc/ontology#affiliation, professor>

Table 7.6: The impact of my pruning techniques.
None Static Runtime Both

Time (s) 4047 1529 1817 687
VGFDs 746 741 729 721

Abnormal 2923 2915 2887 2868

difference between numbers. After each iteration of clustering around the mean,

this alternative, referred to as SortSeq, recursively clusters on two remaining value

sets: one is above the mean and the other below the mean. To handle strings

in this approach, I sort them alphabetically and assign each a sequence number.

Another baseline, LetSum, gives each letter li (i ∈ {1...26}) a value based on alpha-

betic ordering and assigns each string s the value
∑

li∈s li ∗ (1/27)
i. It is analogy of

how fraction number is represented. In base 10, the number 0.312 is equivalent to:

3(1/10)+1(1/10)2+2(1/10)3. Similarly, for example, the string ’cab’ is represented

as 3(1/27) + 1(1/27)2 + 2(1/27)3, assuming each letter is represented as a number

starting from 1. Table 7.7 shows that VGFDs and abnormal data that are based on

the baseline clustering are both less than that of our approach. Among the VGFDs

175



www.manaraa.com

Table 7.7: Comparison between preclustering with an alternative called SortSeq on
VGFDs using the clusters and abnormal data found based on these VGFDs.

Preclustering SortSeq LetSum
Time (s) 114 83 89
VGFDs 42 23 53

Abnormal 625 391 234

300

400

500

600

700

R
u

n
n

in
g

 T
im

e
 (

se
c) level 4

level 3

level 2

level 1

0

100

200

100 200 300 400 500 600 700 800 900 1000

R
u

n
n

in
g

Number of Properties

Figure 7.8: The effect of number of properties on the VGFD searching time.

not found by the SortSeq, most are for string values. SortSeq finds fewer VGFDs

and less abnormal data, because it naively assumes that the more common leading

characters two strings have, the more similar they are. LetSum tends to cluster val-

ues more evenly and creates fewer clusters. The smaller number of clusters means

larger clusters, which leads to more likely dependencies and thus more discovered

VGFDs. But it does not capture the really majority and minority of the values

and so the detected abnormal triples are much less. Thus, my pre-clustering using

cheap and generic computation captures the characteristics of different property val-

ues. Besides the comparison between our pre-clustering with other alternatives, we

also tested the necessity of our pre-clustering by running the system without pre-

clustering step. Specifically, we input the values of each property as one group into

opti-kmeans clustering. Then the Optimal kMeans clustering would start with num-

ber of one to automatically find the optimal number of clusters. The result shows

176



www.manaraa.com

200

300

400

500

600

700

300

400

500

600

700

800

R
u

n
n

in
g

 T
im

e
 (

se
c)

D
is

co
v

e
re

d
 V

G
F

D
s

Time

0

100

200

0

100

200

1% 5% 10%15%20%25%30%35%40%45%50%

R
u

n
n

in
g

D
is

co
v

e
r

Sampling Size in Runtime Pruning

Time

VGFDs

Figure 7.9: The effect of sampling size in runtime pruning on the VGFD searching
time.

that without pre-clustering, the time cost on Optimal kMeans clustering on DBpedia

is 359 seconds, while the total time using pre-clustering and Optimal kMeans is only

114 seconds. The result demonstrates that the pre-clustering step give much benefit

for later finer-grained clustering step. Appendix A gives an example comparison

between results of our proposed clustering and results of the LetSum clustering.

Knowing that pre-clustering and pruning are useful for the system, I system-

atically checked the trend of system performance, especially time, by using these

techniques. To be comparable on data set size, I picked subsets of properties from

DBpedia. For each size, I randomly draw 10 different groups of this size and average

the time over 10 runs. Fig. 7.8 shows that the time for every level of the VGFD

search almost follows a linear trend.

Fig. 7.9 shows the effect of sampling size β used in runtime pruning on the

system. It can be seen that the running time is in linear proportion to the sampling

size. As the VGFD curve shows, β = 0.2 is sufficient to find most dependencies for

DBpedia.

Both Fig. 7.8 and Fig. 7.9 give some idea of how the system scales. Fig. 7.8

shows when the number of properties increases, how the time cost of the system

varies. I believe the number of properties usually are expected in proportional of

data set size, especially when these properties are randomly picked from the same

177



www.manaraa.com

original data sets. For example, a data set with twice of the number of properties is

expected to have twice of the number of triples. If it is, then this figure indirectly

shows how the system scales on different sizes of data. Fig. 7.9 can also be seen as

how the system scales from another perspective. Because when the sampling size

increases, I think it can roughly be seen as keeping the same sampling size on larger

data sets. For example, when we double the sampling size, the time cost can be

roughly expected to be similar to using the same sampling size on a data set with

double the number of triples. Therefore, when we increase the sampling size, this

figure can also be interpreted as increasing the data set size while keeping the same

sampling size.

178



www.manaraa.com

Chapter 8

Conclusion

In this final chapter, I conclude this thesis with analysis of algorithms designed in

this work and future work that can improve on it.

8.1 Analysis

To help improve Semantic Web data quality, I proposed and implemented several

approaches for detecting abnormal Semantic Web data. To this end, I divided

real world Semantic Web data into three scenarios for dealing with object property

triples. Based on these systems, my final system implements a more general mech-

anism. Each diagram of these systems in this thesis have been shown in previous

chapters and is put in dotted boxes in Fig. 8.1 for comparison. To conclude this

thesis, I make a short summary and analysis of each system in the following.

To deal with first type of scenario, the system is based on discovering charac-

teristics from a training data set first and then comparing between the training

dataset and the data being investigated. The training dataset has to satisfy two

requirements. First it is generally correct. This requirement means that the data

set could have few errors but no consistent repeated errors, i.e. no systematic errors.

Although it is hard to quantify the percentage of errors that is allowed, based on my

experiments, when the erroneous data is less than 5%, it usually would not affect

the general patterns in the data set. The second requirement to the data set is that

179



www.manaraa.com

A
b
n
o
rm

al
 S
em

an
ti
c 
W
eb
 d
at
a

S
em

an
ti
c 
W
eb
 d
at
a

R
ef
er
en
ce
d
 

d
at
a

N
o
 

T
ri
p
le
s 
o
f 
lo
w
 

p
ro
b
ab
il
it
y

A
ss
ig
n
 t
ri
p
le
 p
ri
o
r 

p
ro
b
ab
il
it
y

B
u
il
d
 s
u
m
m
ar
y
 g
ra
p
h

F
in
d
 c
an
d
id
at
e 

S
em

an
ti
c 
D
ep
en
d
en
cy

G
et
 p
ro
b
ab
il
it
y
 o
f 
S
D

G
et
 p
o
st
er
io
r 

p
ro
b
ab
il
it
y
 o
f 
tr
ip
le

P
ro
b
ab
il
it
y
 o
f 
tr
ip
le
 

co
n
v
er
g
es
?

N
o

C
lu
st
er
in
g
 p
ro
p
er
ty
 

v
al
u
es

G
en
er
at
e 
a 
le
v
el
 o
f 

ca
n
d
id
at
e 
V
G
F
D
s

R
u
n
ti
m
e 
p
ru
n
in
g

C
o
m
p
u
te
 V
G
F
D

S
to
p
?

N
o

C
o
n
st
ru
ct
 C
o
n
te
x
t 

S
ig
n
if
ic
an
t 
R
el
at
io
n
 

C
la
ss
if
ie
r

R
el
at
io
n
 T
y
p
e 

C
la
ss
if
ie
r

N
o
 N
o
 M

at
ch
ed
 

R
el
at
io
n
 

C
o
n
st
ru
ct
 C
o
n
te
x
t

E
x
tr
ac
t 
F
ea
tu
re
s 
fo
r 

S
ig
n
if
ic
an
t 
R
el
at
io
n

B
u
il
d
 S
ig
n
if
ic
an
t 

R
el
at
io
n
 C
la
ss
if
ie
r

E
x
tr
ac
t 
F
ea
tu
re
s 
fo
r 

S
ig
n
if
ic
an
t 
R
el
at
io
n

E
x
tr
ac
t 
F
ea
tu
re
s 
fo
r 

R
el
at
io
n
 T
y
p
e

B
u
il
d
 R
el
at
io
n
 T
y
p
e 

C
la
ss
if
ie
r

E
x
tr
ac
t 
F
ea
tu
re
s 
fo
r 

R
el
at
io
n
 T
y
p
e

S
y
st
em

 R
u
n
in
g

S
y
st
em

 T
ra
in
in
g

C
o
n
te
x
t 
C
o
n
st
ru
ct
io
n

C
o
n
te
x
t 
E
x
p
an
si
o
n

R
el
at
io
n
 C
la
ss
if
ie
r

C
o
n
te
x
t 
C
o
n
st
ru
ct
io
n

C
o
n
te
x
t 
E
x
p
an
si
o
n

S
am

p
li
n
g
 f
o
r 
L
ea
rn
in
g

L
ea
rn
in
g
 t
o
 B
u
il
d
 

C
la
ss
if
ie
r

In
co
n
si
st
en
t 

R
el
at
io
n
 T
y
p
e

S
y
st
em

 R
u
n
in
g

S
y
st
em

 T
ra
in
in
g

D
et
ec
t 
A
b
n
o
rm
al
 D
at
a

C
h
ap
te
r 
4

C
h
ap
te
r 
5

C
h
ap
te
r 
6

C
h
ap
te
r 
7

Figure 8.1: The architecture of whole system. The four dashed boxes are parallel
algorithms for each situation.

180



www.manaraa.com

it is comprehensively described with respect to the vocabulary of the ontologies,

i.e. the data gives much contextual information for each triple. The comprehen-

siveness is important in that it is an approximate interpretation of the closed world

assumption: given the ontology vocabularies, most of objects in the domain which

the dataset describes have rich usages of all available concepts and properties. The

system utilizes the conditions in this scenario and consists of two components. The

first component extracts several quantitative metrics from the context of a triple

and uses them to check if there is a credible, significant relation between two in-

stances in this triple. The other component extracts patterns from the context of

this triple and matches them against patterns learned from each type of relation in

the training data set. Because the system makes stronger assumptions than that of

other systems, it is the most efficient both on time (4 hours on SWRC) and space.

The open world assumption is more often applied to Semantic Web data. In the

second scenario, the training data and the data to be evaluated are still assumed

generally correct. Corresponding to this scenario, the system is integrated in one

step as opposed to two steps in the previous system and it exploits a new classifier

that is different from those that the previous system used. The system I developed

utilizes a vector space model to represent and support expansion of the context of

each triple. It incorporates a learning model that does not treat missing triples as

negative examples in order to not make the closed world assumption. The system

is good at dealing with data sets that are not fully described for every triple. This

is accomplished by expanding the contexts and the vector space model of contexts

costs more memory than any of the other systems that deals with object property

triples. Although the learning model that considers the open world assumption is

complex, by using sampling during learning, the learning can still be finished under

reasonable amount of time, e.g. 5 hours for SWRC.

The third situation is that there is no clean training data set available. Without

a training data set to learn from, the third system improves the patterns that are

discovered from the data to be evaluated and are similar to what is learned from

the training data in the previous systems. The first improvement considers that

the data contributing to the patterns have different truth probabilities. The second

181



www.manaraa.com

improvement considers the logical consistency among these patterns. Then the

system iteratively adjusts the truth probabilities of triples based on the patterns

supporting them. Besides improving system accuracy, the system also improves on

the pattern discovery process and the operation to get instantiations of each pattern

by generate a summary of original RDF graph. Thus when using an appropriate

stopping threshold and initial prior probability of triples, the time is even less than

the previous system dealing with data set to which the open world assumption is

applied (e.g. 3 hours on SWRC).

All of the previous systems essentially use typical patterns to cast a majority

vote to determine if a triple is abnormal, i.e. if the context of the triple lacks

sufficient patterns. Many patterns are learned from part of the data set, i.e. some

patterns are valid for a fragment of the data, and do not apply generally. Although

there are weighting schemes to adjust their effect, some of them are relatively noisy

patterns and might be spurious. However, if the system only focuses on strong

patterns, it can use them to detect abnormal data by checking conflict with a single

pattern as opposed to using a majority of patterns to vote for the regularity of

the triple. Further it will be clearer and easier to explain to the system user why

some data is abnormal. Another common drawback of previous systems is that

the patterns are based on sharing the same values between the LHS property and

RHS property. An immediate effect of this drawback is that not many patterns

are based on datatype properties, because the values of datatype properties are

not instances and then different properties cannot be connected on them in RDF

graphs. Therefore it is necessary to discover patterns that do not require value

reuse. Having the above thoughts, to find more implicit, stronger patterns, the last

approach extended the concept of functional dependency in databases into value-

clustered graph functional dependencies. These dependencies are devised to capture

implicit correlations among all types property (both object property and datatype

property) values, even if there is no explicit connection between these values (i.e.

triples may not be connected through reused values). The extension includes several

aspects. First, it introduces operators to combine properties in order to retrieve more

semantics about the instances, such as composition and conjunction operators that

182



www.manaraa.com

chain properties together and consider collections of property chains, respectively.

Second, it considers property values with similar semantics instead of only based on

syntactic comparison.

All of these algorithms are designed for different situations and can be easily

applied on various Semantic Web data. To sum up, this thesis has the following

contributions.

1. I have developed three algorithms to evaluate the data quality issues of object

property triples in different situations according to completeness and entire

quality of data. Demonstrated through experiments, given a well described

training data set, the first algorithm can achieve over 80% F-score on classi-

fying normal data and abnormal data. Given a data set to which the open

world assumption is applied (e.g. 9% original data is removed from the data

set), the F-score of second algorithm is 8% better and drops less than 3%

compared to when using a complete data set to learn from. When not given a

clean data set for training, the third algorithm extracted the patterns similar

to those in previous algorithms while improving accuracy of their probabilities

by taking into account truth probabilities of triples. Shown in experiments,

when given data sets containing 9% or more incorrect data, the third system

can get better performance than that of previous systems using these given

data sets.

2. I have demonstrated what kind of context is useful for evaluating object prop-

erty triples in order to increase accuracy of data quality problem. The context

for a triple essentially are paths on RDF graphs connecting the pair of ob-

jects in this triple. Given the context, the system can appropriately retrieve

the semantics representing their relationship from these paths by interpreting

the sequence of predicates on it. Further combining and comparing semantics

on different paths, the system can determine the direct relationship between

the pair of objects with certain probabilities. Based on this idea, the system

can report how likely the triple is abnormal through how similar the triple

is to that the system determined. All the experiments for the algorithms in

183



www.manaraa.com

this thesis essentially show the effectiveness of these contexts, though they

might be in different forms, such as RDF subgraphs, semantic dependencies

or VGFDs.

3. I have extended the concept of functional dependency from relational databases

into RDF graphs and used them to detect abnormal Semantic Web data. The

experiments on three real world data sets show that the algorithm has a de-

cent precision (e.g. 86% out of 2868 reported errors on DBpedia) on detecting

errors in original data sets. Meanwhile, results demonstrated that the system

can detect useful and meaningful dependencies based on both syntactics and

semantics (through clustering). Futhermore, several pruning techniques in the

algorithm make the system applicable for large scale real world Semantic Web

data set, since it only takes 12 minutes on a data set with 10 million triples

using servers with 8 Xeon 2.93G cores.

8.2 Future Work

Although I have conducted many experiments to test the approaches and algorithms,

there is much room to improve these systems. Some of the key points that can be

improved are discussed below.

First, in Chapter 6, I used an iterative approach adjusting the triple’s probability

according to the probability of semantic dependencies that can support it. There

is a theoretical question if this iterative process is guaranteed to converge or stop

at certain specified conditions. Although I gave a brief analysis on how the system

is designed to be guaranteed to stop in any conditions, it would be ideal if there is

formal proof. Because the iterative process consists of several steps of computation,

the formal proof requires the analysis of the input and output of each step. The

analysis must consider what is changed by the computation in each step and how

each change happens. From this analysis, I could clearly see how each step can affect

the next step. Therefore, given the initial input before all steps, the analysis results

will show what are changed after each step in every iteration and so that I can

184



www.manaraa.com

conclude if this iterative process can make the triple’s truth probability converge,

given the input stopping threshold. Although the analysis mainly depends on the

actual data set, it is possible to conduct the analysis on some extreme cases to

bound the possible changes and the expected changes based on my observations of

the system running on several different real world data sets. Besides that, since some

steps of the probability computation are inspired from classic probability theory, it

is ideal that I can use analysis techniques or results from existing similar probability

theories that can apply in our problem, e.g. naive Bayesian.

Second, to better understand and improve the approach using value-clustered

functional dependency, I think it is better to have a theoretical complexity analysis.

Because this approach is extended from functional dependency in databases and it

is designed to deal with RDF data or, more generally, the data in graph models, it is

likely to be more computationally complex than discovering functional dependency

in databases. Thus it would be valuable to give some theoretical analysis and com-

parison with representative approaches for discovering functional dependencies in

databases. The comparison would help us to better understand the strength of our

approach and if the designed approach is the best choice compared to approaches for

discovering simpler functional dependencies in databases. Before detailed complex-

ity analysis, a possible future work is to report whether the heuristics or pruning

methods would not be effective in some situations and, if it is, what these cases are

and how likely these cases are. After that, it is appropriate to analyze the complex-

ity of the system in two situations: the worst case and the expected case. The worst

case would be when the heuristics/pruning fail, while the expected case is when they

provide some benefit. Besides the complexity analysis, I also plan to analyze how to

improve the VGFD’s capability on detecting abnormal data. To this end, I need to

analyze in detail what kind of VGFDs can detect more abnormal data than others

and why they do. Following it, the question I can try to answer is how to make

other VGFDs that improve on this capability or how to find more such VGFDs.

Besides the works on theoretical aspects, I recognize that the RHS of VGFDs

discovered by current system are only single original properties. To make it more

general, I need extend it to composite properties as used in the LHS of VGFDs.

185



www.manaraa.com

I believe that this extension will make VGFDs more theoretically complete. But

it would greatly increase the complexity. Therefore, I need to carefully consider

only those situations where it is necessary to extend the RHS and if it can bring

any meaningful VGFDs. Then I also need to consider how to improve the new

computation process, e.g. some additional heuristics or pruning techniques. The

experiments could be essentially similar to the process that I conducted on current

system. I input the system different popular data sets that have different sizes and

are on different domains. Then I record detailed performance of the system on each

step. It is also possible that I pick subsets of each data set with increasing sizes of

number of triples, properties, etc. Then based on these subsets, I can systematically

analyze the performance trend of the system on each step. Besides the performance,

more importantly I can investigate the quality of system results. I may ask several

Semantic Web experts to manually verify a small portion of samples of results and

then summarize them. Or I may use some crowd sourcing mechanism to public

verify the results.

Although functional dependency is by far the most common form of integrity

constraints in databases, multivalued dependency in databases is also an important

and useful concept. If I can devise a way to extend the multivalued dependency to

apply to RDF graphs, it might bring more potential integrity constraints in RDF

data and so be able to discover more erroneous triples. To accomplish this goal, the

first of future steps is to review and critically think about previous approaches for

discovering multivalued dependencies in databases.

This thesis discussed the problem of low quality data on the Semantic Web,

previous research on similar problems and several algorithms that I designed to help

detect such quality issues in real world Semantic Web data. The thesis can help

researchers notice that the significance of data quality issues on the Semantic Web.

Further it can help people be familiar with previous approaches and thoughts on

this problem. Finally, the results of the systems and experiments that I developed

can help researchers better create, consume Semantic Web data. Finally, it promises

to lead Semantic Web data (e.g. Linked Data) to a higher quality. These higher

quality of Semantic Web data then might save the huge cost of low quality data

186



www.manaraa.com

(e.g. 600 billion dollars spent each year discussed at the beginning of this thesis),

avoid negative impacts on people’s everyday life (e.g. the potential health impacts

of radiation safety tests discussed at the beginning of this thesis) and more.

187



www.manaraa.com

188



www.manaraa.com

Appendix A

Example comparisons of clustering

results

This section gives detailed comparison on results of clustering algorithms between

the one we proposed and the baseline LetSum which is discussed in Section 7.6. The

first example is clustering on values of property http://dbpedia.org/ontology/

SoccerClub/managerTitle. The following is the list of clusters proposed by our

system.

1. Manager, First Team Manager, Senior Mens Manager, Vice-President, Player-

manager, Director of Football, Player/Manager, Club Secretaries, Head Coach

Pasi Rautio manager = Juhani Vesanen, Caretaker manager, Trainer-manager,

Head Coach Teemu Ryypp?manager = Antti Korpela, 1st Team Manager,

Technical Director<br>/Manager, Interim Reserve Manager, Last Manager,

Player manager, Head Coach Pavel Tresnak manager = Oiva Tapio, Manager-

Captain, Team Manager, Team manager

2. Coach, First Team Coach, Head coach and Director of Operations, Senior

Coach, Acting head coach, Reserve team coach, Chief Coach, 1st Team Coach,

Interim Head Coach, First Grade Coach, Player-coach, Team head, Head

Coach, Head coach,

189



www.manaraa.com

3. CEO,

4. Teamchef,

5. Director, Sports Director, Technical Director, Director general,

6. Managers, Joint Managers, Caretaker Managers, Joint managers, Co-managers,

Co-Managers,

7. President,

8. Captain,

9. Trainer,

10. Co-Trainers,

11. Coaches,

12. D.T, D.T.,

13. Secretary,

14. Founder,

The second list is the clusters suggested by LetSum clustering. Each string is also

associated with its number representation used in clustering.

1. Joint Managers, Joint managers,

Interim Head Coach, Last Manager,

Interim Reserve Manager,

2. Head Coach, Head coach, Founder, First Team Coach, First Team Manager,

Head coach and Director of Operations, Head Coach Pasi Rautio manager =

Juhani Vesanen,

Head Coach Teemu Ryypp?manager = Antti Korpela, First Grade Coach,

Head Coach Pavel Tresnak manager = Oiva Tapio,

190



www.manaraa.com

3. Manager, Managers, Manager-Captain,

4. President, Player-manager, Player/Manager,

Reserve team coach, Player manager, Player-coach,

5. Coach, Captain, CEO, D.T., Director, Director of Football, D.T, Co-managers,

Club Secretaries, Caretaker Managers, Chief Coach, Co-Trainers, Caretaker

manager, Coaches, Co-Managers, Director general,

6. Secretary, Senior Mens Manager, Teamchef, Trainer, Senior Coach, Sports

Director,

Team Manager, Team manager, Technical Director,

Trainer-manager, Team head,

Technical Director<br>/Manager,

7. Acting head coach, 1st Team Coach, 1st Team Manager,

8. Vice-President,

The second example is one property http://dbpedia.org/ontology/Rocket/

function. The following is the results of our system.

1. Re-usable orbital launch vehicle, Man-rated re-usable orbital launch vehicle,

All-solid small orbital launch vehicle, Manned partially re-usable launch and

reentry system, Unmanned Launch Vehicle, Technology demonstrator for liq-

uid propulsion based VTOL rocket flight,

Prototype ICBM<br>Expendable launch system, LEO launch vehicle,

Manned/unmanned LEO and Lunar launch vehicle, Space Station launch ve-

hicle, Satellite launch vehicle, Mid-Heavy Lift Launch System, Super Heavy

launch vehicle, Small, modular component launch vehicle, Cargo Launch Ve-

hicle (unmanned),

EELV/Medium-heavy launch vehicle, Vehicle for re-entry studies, Sub-Orbital

Test Vehicle

191



www.manaraa.com

2. Expendable launch system, Medium Lift Launch System, High Expendable

launch system<br>Sounding rocket, Heavy suborbital launch system,

3. SLBM,

4. Interim carrier rocket, GTO Carrier rocket, Manned heavy-lift multi-purpose

carrier rocket,

5. Sounding rocket,

6. ASAT booster,

7. Unmanned test capsule,

8. Unmanned reusable spaceplane technology demonstrator,

9. ICBM,

10. Prototype ICBM,

11. A-1: Experimental,

12. Anti-satellite weapon,

13. Intercontinental ballistic missile,

Then the list of clusters suggested by LetSum is given below.

1. Medium Lift Launch System, Man-rated re-usable orbital launch vehicle,

Manned heavy-lift multi-purpose carrier rocket,

Medium expendable Launch vehicle, Launch System, Medium carrier rocket,

Manned partially re-usable launch and reentry system, Manned Re-usable or-

bital launch vehicle,

Medium expendable launch system, Manned launch vehicle, Man-rated orbital

launch vehicle, LEO launch vehicle, Manned LEO launch vehicle,

Manned/unmanned LEO and Lunar launch vehicle, Manned LEO and Lunar

launch vehicle, launch vehicle, Medium expendable Carrier rocket, Manned

192



www.manaraa.com

lunar carrier rocket, Mid-Heavy Lift Launch System, Launch vehicle, Manned

Re-usable Spaceplane, Man-rated LEO carrier rocket, Manned expendable

launch system, man-rated orbital launch vehicle, Medium/Heavy launch ve-

hicle, Medium launch vehicle, Manned launch system, Manned sub-orbital

launch vehicle,

2. Orbital launch vehicle, Orbital carrier rocket,

Prototype ICBM<br>Expendable launch system, Prototype ICBM, Proto-

type expendable launch system,

3. ICBM, Intercontinental ballistic missile, Interim carrier rocket, Heavy carrier

rocket, High Expendable launch system<br>Sounding rocket, Heavy Manned

Launch vehicle, ICBM/Launch vehicle, Heavy suborbital launch system, Heavy

launch vehicle, GTO Carrier rocket, Heavy expendable launch system,

4. Sounding rocket, Re-usable orbital launch vehicle, Small orbital launch vehicle,

Small carrier rocket, Space Station launch vehicle, Satellite launch vehicle,

Suborbital launch system, Small expendable launch system, Sub-Orbital Test

Vehicle,

Small, modular component launch vehicle, Super Heavy launch vehicle, SLBM,

Small launch vehicle,

5. Unmanned Launch Vehicle, Technology demonstrator for liquid propulsion

based VTOL rocket flight, Unmanned launch vehicle, Unmanned LEO and

Lunar launch vehicle, Unmanned reusable spaceplane technology demonstra-

tor, Test vehicle, Unmanned Re-usable Spaceplane, Unmanned test capsule,

Unmanned Re-usable Spaceplane technology demonstrator,

6. Expendable launch system, Expendable launch vehicle, Experimental carrier

rocket, EELV/Medium-heavy launch vehicle,

Expendable carrier rocket, Expendable launch system<br>Sounding rocket,

7. Vehicle for re-entry studies,

193



www.manaraa.com

8. Carrier rocket, All-solid small orbital launch vehicle,

Anti-satellite weapon, Cargo Launch Vehicle (unmanned),

ASAT booster,

9. A-1: Experimental(0.037037052),

194



www.manaraa.com

Bibliography

[1] Openlink software, sponger technology. http://virtuoso.openlinksw.com/

dataspace/dav/wiki/Main/VirtSponger.

[2] Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. SOCIAL

NETWORKS, 25:211–230, 2001.

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association

rules between sets of items in large databases. SIGMOD Rec., 22:207–216,

June 1993.

[4] Mike M. Ahlers. TSA orders ’re-tests’ of radiation levels on airport

body scanners. CNN, http://edition.cnn.com/2011/US/03/11/tsa.body .scan-

ners/index.html, 12 Mar. 2011.

[5] Pierre Allard, Sébastien Ferré, and Olivier Ridoux. Discovering functional

dependencies and association rules by navigating in a lattice of olap views. In

Marzena Kryszkiewicz and Sergei A. Obiedkov, editors, CLA, volume 672 of

CEUR Workshop Proceedings, pages 199–210. CEUR-WS.org, 2010.

[6] F. J. Anscombe and I. Guttman. Rejection of outliers. Technometrics,

2(2):123–147, 1960.

[7] Kemafor Anyanwu, Angela Maduko, and Amit Sheth. Semrank: ranking

complex relationship search results on the Semantic Web. In WWW ’05,

pages 117–127, New York, NY, USA, 2005. ACM.

195



www.manaraa.com

[8] William W. Armstrong. Dependency Structures of Data Base Relationships.

In Proc.˜of IFIP World Computer Congress, pages 580–583, 1974.

[9] Paolo Atzeni and Valeria De Antonellis. Relational database theory. Benjamin-

Cummings Publishing Co., Inc., Redwood City, CA, USA, 1993.

[10] Yonatan Aumann and Yehuda Lindell. A statistical theory for quantitative

association rules. In Journal of Intelligent Information Systems, pages 261–

270, 1999.

[11] Kenneth Baclawski, Mieczyslaw M. Kokar, Paul A. Kogut, Lewis Hart, Jef-

frey E. Smith, William S. Holmes, III, Jerzy Letkowski, and Michael L. Aron-

son. Extending uml to support ontology engineering for the semantic web. In

Proceedings of the 4th International Conference on The Unified Modeling Lan-

guage, Modeling Languages, Concepts, and Tools, &#171;UML&#187; ’01,

pages 342–360, London, UK, UK, 2001. Springer-Verlag.

[12] A. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicsek. Evo-

lution of the social network of scientific collaborations. Physica A: Statistical

Mechanics and its Applications, 311(3-4):590–614, August 2002.

[13] V. Barnett and Lewis T. Outliers in statistical data. 3rd edition. Biometrical

Journal, 37(2):256–256, 1995.

[14] Catriel Beeri, Martin Dowd, Ronald Fagin, and Richard Statman. On the

structure of armstrong relations for functional dependencies. J. ACM, 31:30–

46, January 1984.

[15] Tim Berners-Lee. Sir tim berners-lee talks with talis about the semantic web.

February 2008.

[16] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scien-

tific American, 284(5):34–43, 2001.

[17] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so

far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

196



www.manaraa.com

[18] Rudolf K. Bock and Werner Krischer. The Data Analysis Briefbook. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1998.

[19] Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. A cost-

based model and effective heuristic for repairing constraints by value modi-

fication. In Proceedings of the 2005 ACM SIGMOD international conference

on Management of data, SIGMOD ’05, pages 143–154, New York, NY, USA,

2005. ACM.

[20] Janez Brank, Marko Grobelnik, and Dunja Mladeni04. A survey of ontology

evaluation techniques. In In In Proceedings of the Conference on Data Mining

and Data Warehouses (SiKDD 2005, 2005.

[21] Paul G. Brown and Peter J. Hass. Bhunt: automatic discovery of fuzzy alge-

braic constraints in relational data. In Proceedings of the 29th international

conference on Very large data bases - Volume 29, VLDB ’2003, pages 668–679.

VLDB Endowment, 2003.

[22] Doina Caragea, Vikas Bahirwani, Waleed Aljandal, and William H. Hsu.

Ontology-based link prediction in the livejournal social network. In Vadim

Bulitko and J. Christopher Beck, editors, SARA. AAAI, 2009.

[23] Kei-Hoi Cheung, Kevin Y. Yip, Andrew Smith, Remko Deknikker, Andy

Masiar, and Mark Gerstein. Yeasthub: a semantic web use case for inte-

grating data in the life sciences domain. Bioinformatics, 21:85–96, January

2005.

[24] E. F. Codd. Relational completeness of data base sublanguages. In Database

Systems, pages 65–98. Prentice-Hall, 1972.

[25] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. Improving

data quality: consistency and accuracy. In Proceedings of the 33rd interna-

tional conference on Very large data bases, VLDB ’07, pages 315–326. VLDB

Endowment, 2007.

197



www.manaraa.com

[26] S Decker, S Melnik, F Van Harmelen, D Fensel, M Klein, J Broekstra, M Erd-

mann, and I Horrocks. The semantic web: The roles of xml and rdf. IEEE

Internet Computing, 4(5):63–74, 2000.

[27] Wayne Eckerson. Data Quality and the Bottom Line: Achieving Business

Success through a Commitment to High Quality Data. Technical report, The

Data Warehousing Institute, 2002.

[28] Larry P. English. Improving data warehouse and business information quality:

methods for reducing costs and increasing profits. John Wiley & Sons, Inc.,

New York, NY, USA, 1999.

[29] Eleazar Eskin. Anomaly detection over noisy data using learned probability

distributions. In Pat Langley, editor, ICML, pages 255–262. Morgan Kauf-

mann, 2000.

[30] Victoria P. Evans. Strategies for Detecting Outliers in Regression Analysis

[microform] : An Introductory Primer / Victoria P. Evans. Distributed by

ERIC Clearinghouse, [Washington D.C.] :, 1999.

[31] Ronald Fagin. Functional Dependencies in a Relational Data Base and Propo-

sitional Logic. Ibm Journal of Research and Development, 21:543–544, 1977.

[32] Ronald Fagin and Moshe Y. Vardi. The theory of data dependencies - an

overview. In Jan Paredaens, editor, ICALP, volume 172 of Lecture Notes in

Computer Science, pages 1–22. Springer, 1984.

[33] Christos Faloutsos, Kevin S. Mccurley, and Andrew Tomkins. Fast discovery

of connection subgraphs. In KDD ’04: Proceedings of the 2004 ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 118–

127, New York, NY, USA, 2004. ACM Press.

[34] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Condi-

tional functional dependencies for capturing data inconsistencies. ACM Trans.

Database Syst., 33:6:1–6:48, June 2008.

198



www.manaraa.com

[35] Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. Triplerank:

Ranking semantic web data by tensor decomposition. In International Se-

mantic Web Conference, pages 213–228, 2009.

[36] Christian Fürber and Martin Hepp. Using sparql and spin for data qual-

ity management on the semantic web. In Witold Abramowicz and Robert

Tolksdorf, editors, BIS, volume 47 of Lecture Notes in Business Information

Processing, pages 35–46. Springer, 2010.

[37] Lise Getoor and Christopher P. Diehl. Link mining: a survey. SIGKDD

Explor. Newsl., 7:3–12, December 2005.

[38] Hugh Glaser, Ian C. Millard, and Afraz Jaffri. Rkbexplorer.com: a knowledge

driven infrastructure for linked data providers. In Proceedings of the 5th Euro-

pean semantic web conference on The semantic web: research and applications,

ESWC’08, pages 797–801, Berlin, Heidelberg, 2008. Springer-Verlag.

[39] F. E. Grubbs. Procedures for detecting outlying observations in samples.

Technometrics, 11:1–21, 1969.

[40] Thomas R. Gruber and Patrice O. Gautier. Machine-generated explanations

of engineering models: A compositional modeling approach. In In Proc. Inter-

national Joint Conference on Artificial Intelligence, pages 1502–1508. Morgan

Kaufmann, 1993.

[41] N. Guarino. Formal Ontology in Information Systems: Proceedings of the 1st

International Conference June 6-8, 1998, Trento, Italy. IOS Press, Amster-

dam, The Netherlands, The Netherlands, 1st edition, 1998.

[42] R. Guha, R. Mccool, and R. Fikes. Contexts for the semantic web. In Interna-

tional Semantic Web Conference, volume 3298 of Lecture Notes in Computer

Science, pages 32–46. Springer, 2004.

199



www.manaraa.com

[43] Peter J. Haas, Fabian Hueske, and Volker Markl. Detecting attribute depen-

dencies from query feedback. In Proceedings of the 33rd international confer-

ence on Very large data bases, VLDB ’07, pages 830–841. VLDB Endowment,

2007.

[44] Olaf Hartig. Provenance Information in the Web of Data, pages 1–9. CEUR-

WS, 2009.

[45] Sven Hartmann, Sebastian Link, and Markus Kirchberg. A subgraph-based

approach towards functional dependencies for XML. In Nagib Callaos, William

Lesso, Shahram Rahimi, Verra Boonjiing, Jihad Mohamad, Te-Kai Liu, and

Klaus-Dieter Schewe, editors, Computer Science and Engineering: II, vol-

ume IX of Proceedings of the 7th World Multiconference on Systemics, Cyber-

netics and Informatics (SCI), pages 200–211. International Institute of Infor-

matics and Systemics (IIIS), 2003.

[46] Douglas M. Hawkins. Identification of Outliers. Chapman and Hall, 1980.

[47] Martin Hepp. Goodrelations: An ontology for describing products and services

offers on the web. In Proceedings of the 16th international conference on

Knowledge Engineering: Practice and Patterns, EKAW ’08, pages 329–346,

Berlin, Heidelberg, 2008. Springer-Verlag.

[48] S.W. Huck. Reading Statistics and Research. Pearson, 2011.

[49] Yk Huhtala, Juha Krkkinen, Pasi Porkka, and Hannu Toivonen. Tane: An

efficient algorithm for discovering functional and approximate dependencies.

The Computer Journal, 42(2):100–111, 1999.

[50] B. Iglewicz and D.C. Hoaglin. How to detect and handle outliers. ASQC basic

references in quality control. ASQC Quality Press, 1993.

[51] Matthew A. Jaro. Advances in Record-Linkage Methodology as Applied to

Matching the 1985 Census of Tampa, Florida. Journal of the American Sta-

tistical Association, 84(406):414–420, 1989.

200



www.manaraa.com

[52] R. A. Johnson and D. W. Wichern, editors. Applied multivariate statistical

analysis. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[53] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An

Introduction to Cluster Analysis. Wiley-Interscience, 9th edition, March 1990.

[54] William Kent. Limitations of record-based information models. ACM Trans.

Database Syst., 4(1):107–131, March 1979.

[55] Edwin M. Knorr and Raymond T. Ng. A unified notion of outliers: Properties

and computation. In In Proc. of the International Conference on Knowledge

Discovery and Data Mining, pages 219–222. AAAI Press, 1997.

[56] Flip Korn, Alexandros Labrinidis, Yannis Kotidis, and Christos Faloutsos.

Ratio rules: A new paradigm for fast, quantifiable data mining. In Proceedings

of the 24rd International Conference on Very Large Data Bases, VLDB ’98,

pages 582–593, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers

Inc.

[57] David Kravets. TSA Admits Bungling of Airport Body-Scanner Radiation

Tests. WIRED, http://www.wired.com/threatlevel/2011/03/tsa-radiation-

test-bungling¿, 15 Mar. 2011.

[58] Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. Designing functional de-

pendencies for xml. In Proceedings of the 8th International Conference on

Extending Database Technology: Advances in Database Technology, EDBT

’02, pages 124–141, London, UK, 2002. Springer-Verlag.

[59] M. Levene and A. Poulovanssilis. An object-oriented data model formalised

through hypergraphs. Data Knowl. Eng., 6:205–224, May 1991.

[60] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social

networks. In Proceedings of the twelfth international conference on Information

and knowledge management, CIKM ’03, pages 556–559, New York, NY, USA,

2003. ACM.

201



www.manaraa.com

[61] Shou-de Lin and Hans Chalupsky. Unsupervised link discovery in multi-

relational data via rarity analysis. In Proceedings of the Third IEEE Inter-

national Conference on Data Mining, ICDM ’03, pages 171–178, Washington,

DC, USA, 2003. IEEE Computer Society.

[62] M. Loève. Probability theory. Number v. 1 in Graduate texts in mathematics.

Springer-Verlag, 1978.

[63] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of func-

tional dependencies and armstrong relations. In Proceedings of the 7th Interna-

tional Conference on Extending Database Technology: Advances in Database

Technology, EDBT ’00, pages 350–364, London, UK, 2000. Springer-Verlag.

[64] Heikki Mannila and Kari-Jouko Räihä. Algorithms for inferring functional

dependencies from relations. Data Knowl. Eng., 12(1):83–99, 1994.

[65] Andrian Marcus and Jonathan I. Maletic. Utilizing association rules for the

identification of errors in data. Technical report, 2000.

[66] Prabhaker Mateti and Narsingh Deo. On algorithms for enumerating all cir-

cuits of a graph. SIAM J. Comput., pages 90–99, 1976.

[67] A. Maydanchik. Data Quality Assessment. Data quality for practitioners

series. Technics Publications, 2007.

[68] Brian Mcbride. Jena: A semantic web toolkit. IEEE Internet Computing,

6:55–59, 2002.

[69] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of

high-dimensional data sets with application to reference matching. In Pro-

ceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’00, pages 169–178, New York, NY, USA,

2000. ACM.

[70] S. Milgram. The small world problem. Psychology Today, May 1967.

202



www.manaraa.com

[71] Michael Mitzenmacher. A brief history of generative models for power law

and lognormal distributions. INTERNET MATHEMATICS, 1:226–251.

[72] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms.

The Computer Journal, 26(4):354–359, November 1983.

[73] Felix Naumann, Ulf Leser, and Johann-Christoph Freytag. Quality-driven

integration of heterogeneous information systems. In In VLDB Conference,

pages 447–458, 1999.

[74] M. E. J. Newman. Clustering and preferential attachment in growing networks.

Phys. Rev. E, 64, 2001.

[75] Eyal Oren, Sebastian Gerke, and Stefan Decker. Simple algorithms for pred-

icate suggestions using similarity and co-occurrence. In Proceedings of the

4th European conference on The Semantic Web: Research and Applications,

ESWC ’07, pages 160–174, Berlin, Heidelberg, 2007. Springer-Verlag.

[76] Jason W. Osborne and Amy Overbay. The power of outliers (and why re-

searchers should always check for them). Practical Assessment, Research &

Evaluation, 9(6):1–12, 2004.

[77] Balaji Padmanabhan and Alexander Tuzhilin. A belief-driven method for

discovering unexpected patterns. In KDD, pages 94–100, 1998.

[78] Marcus Paradies, Christian Lemke, Hasso Plattner, Wolfgang Lehner, Kai-

Uwe Sattler, Alexander Zeier, and Jens Krueger. How to juggle columns:

an entropy-based approach for table compression. In Proceedings of the

Fourteenth International Database Engineering and Applications Symposium,

IDEAS ’10, pages 205–215, New York, USA, 2010. ACM.

[79] Leo L. Pipino, Yang W. Lee, and Richard Y. Wang. Data quality assessment.

Commun. ACM, 45:211–218, April 2002.

203



www.manaraa.com

[80] Cartic Ramakrishnan, William H. Milnor, Matthew Perry, and Amit P.

Sheth. Discovering informative connection subgraphs in multi-relational

graphs. SIGKDD Explor. Newsl., 7(2):56–63, December 2005.

[81] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Pearson Education, 2 edition, 2003.

[82] Marta Sabou, Miriam Fernandez, and Enrico Motta. Evaluating semantic

relations by exploring ontologies on the semantic web. pages 269–280, 2010.

[83] L. Sachs. Applied statistics: a handbook of techniques. Springer series in

statistics. Springer-Verlag, 1984.

[84] Gerard Salton and Michael J. McGill. Introduction to Modern Information

Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[85] Monica Scannapieco and Carlo Batini. Completeness in the relational model:

a comprehensive framework. In InduShobha N. Chengalur-Smith, Louiqa

Raschid, Jennifer Long, and Craig Seko, editors, IQ, pages 333–345. MIT,

2004.

[86] S. Schaffert, J. Eder, S. Gr”unwald, T. Kurz, M. Radulescu, R. Sint, and

S. Stroka. KiWi–a platform for semantic social software. In 4th Workshop on

Semantic Wikis, ESWC, 2009.

[87] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems

Concepts. McGraw-Hill, Inc., New York, NY, USA, 5 edition, 2006.

[88] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association

rules in large relational tables. In Proceedings of the 1996 ACM SIGMOD

international conference on Management of data, SIGMOD ’96, pages 1–12,

New York, NY, USA, 1996. ACM.

[89] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and

Dave Reynolds. Sparql basic graph pattern optimization using selectivity

204



www.manaraa.com

estimation. In Proceeding of the 17th international conference on World Wide

Web, WWW ’08, pages 595–604, New York, NY, USA, 2008. ACM.

[90] Nenad Stojanovic, Rudi Studer, and Ljiljana Stojanovic. An approach for the

ranking of query results in the semantic web. In Dieter Fensel, Katia Sycara,

and John Mylopoulos, editors, The Semantic Web - ISWC 2003, volume 2870

of Lecture Notes in Computer Science, pages 500–516. Springer Berlin / Hei-

delberg, 2003.

[91] Jiao Tao, Li Ding, and Deborah L. McGuinness. Instance data evaluation for

semantic web-based knowledge management systems. In 42st Hawaii Inter-

national International Conference on Systems Science (HICSS-42 2009), 5-8

January 2009, Waikoloa, Big Island, HI, USA, pages 1–10. IEEE Computer

Society, 2009.

[92] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the

number of clusters in a data set via the gap statistic. Journal Of The Royal

Statistical Society Series B, 63(2):411–423, 2001.

[93] Johanna Volker, Denny Vr, York Sure, and Andreas Hotho. Learning disjoint-

ness. In In: Proceedings of the 4th European Semantic Web Conference, pages

175–189. Springer, 2007.

[94] Raphael Volz, Siegfried Handschuh, Steffen Staab, Ljiljana Stojanovic, and

Nenad Stojanovic. Unveiling the hidden bride: deep annotation for mapping

and migrating legacy data to the semantic web. J. Web Sem., 1(2):187–206,

2004.

[95] Howard Wainer. Robust statistics: A survey and some prescriptions. Journal

of Educational Statistics, 1(4):285–312, 1976.

[96] Richard Y. Wang and Diane M. Strong. Beyond accuracy: What data quality

means to data consumers. Research in computer science, pages 5–33, 1996.

205



www.manaraa.com

[97] E. Watkins and Denis Nicole. Named graphs as a mechanism for reason-

ing about provenance. In Xiaofang Zhou, Jianzhong Li, Heng T. Shen,

Masaru Kitsuregawa, and Yanchun Zhang, editors, Frontiers of WWW Re-

search and Development - APWeb 2006, volume 3841, chapter 99, pages 943–

948. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[98] Grant E. Weddell. Reasoning about functional dependencies generalized for

semantic data models. ACM Trans. Database Syst., pages 32–64, 1992.

[99] Dawei Yin, Zhenzhen Xue, Liangjie Hong, and Brian D. Davison. A proba-

bilistic model for personalized tag prediction. In KDD, pages 959–968, 2010.

[100] Yang Yu and Jeff Heflin. Detecting abnormal data for ontology based in-

formation integration. International Workshop on Semantic Technologies for

Information-Integrated Collaboration., pages 431–438, 2011.

[101] Yang Yu and Jeff Heflin. Extending functional dependency to detect abnormal

data in rdf graphs. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor,

Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist,

editors, International Semantic Web Conference (1), volume 7031 of Lecture

Notes in Computer Science, pages 794–809. Springer, 2011.

[102] Yang Yu, Donald Hillman, Basuki Setio, and Jeff Heflin. A case study in

integrating multiple e-commerce standards via semantic web technology. In

Proceedings of the 8th International Semantic Web Conference, ISWC ’09,

pages 909–924, Berlin, Heidelberg, 2009. Springer-Verlag.

[103] Yang Yu, Yingjie Li, and Jeff Heflin. Detecting abnormal semantic web data

using semantic dependency. International Conference on Semantic Comput-

ing, 0:154–157, 2011.

[104] Yang Yu, Xingjian Zhang, and Jeff Heflin. Learning to detect abnormal se-

mantic web data. In Mark A. Musen and Óscar Corcho, editors, K-CAP,

pages 177–178. ACM, 2011.

206



www.manaraa.com

[105] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data

clustering algorithm and its applications. Data Min. Knowl. Discov., 1:141–

182, January 1997.

207



www.manaraa.com

Vita

Yang Yu completed his Ph.D. in Computer Science from Lehigh University, PA,

USA in May, 2012. He holds a Bachelor of Engineering in Computer System from

Southeast University, Nanjing, China, and a Master of Engineering in Computer

Science from Nanjing University of Science and Technology, Nanjing, China. Yang’s

primary research interests are the Semantic Web, Data Mining, Machine Learning,

Ontology Evaluation, Knowledge Extraction, Information Integration, etc. He has

co-authored several papers in these domains, including the following:

Y. Yu, J. Heflin, Extending Functional Dependency to Detect Abnormal Data

in RDF Graphs, the 10th International Semantic Web Conference (ISWC2011),

pp794-809, Bonn, Germany, 2011.

Y. Yu, Y. Li, J. Heflin, Detecting Abnormal Semantic Web Data Using Seman-

tic Dependency, the Fifth IEEE International Conference on Semantic Computing

(ICSC 2011), pp154-157, Palo Alto, CA, USA, 2011.

Y. Yu, J. Heflin, Learning to Detect Abnormal Semantic Web Data, the Sixth

International Conference on Knowledge Capture (K-CAP 2011), pp177-178, Banff,

Canada, 2011.

Y. Yu, J. Heflin, Detecting Abnormal Data for Ontology Based Information Inte-

gration, International Workshop on Semantic Technologies for Information-Integrated

Collaboration (STIIC 2011), CTS 2011, pp431-438, Philadelphia, PA, USA, 2011.

Y. Li, Y. Yu and J. Heflin, A Multi-ontology Synthetic Benchmark for the Se-

mantic Web, the 1st International Workshop on Evaluation of Semantic Technologies

(IWEST2010), ISWC2010, Shanghai, China, 2010.

Y. Yu, D. Hillman, B. Setio and J. Heflin, A Case Study in Integrating Mul-

tiple E-commerce Standards via Semantic Web Technology, the 8th International

Semantic Web Conference (ISWC2009), pp 909-924, Washington D.C., USA, 2009.

208


